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Abstract 
Since the onset of the industrialisation in the early 19th century, land use and land cover in the 

province of Salzburg has changed significantly. The documentation and visualisation of this change 

through long-term studies is important for the evaluation of landscape changes and the core of many 

often interdisciplinary studies. The greatest obstacle to analysing long-term landscape change to date 

is the limited availability of comprehensive historical data sets. While today many geographic datasets 

are available, they are overwhelmingly restricted to recent timeframes and rarely older than 50 years. 

A proven method to extend timeframes is to utilize historic maps, but manual map vectorization is 

time consuming and prone to errors which has so far limited their application in the amount of 

vectorized historic data.  

This study aimed at developing a workflow in Trimble eCognition for a semiautomatic extraction of 

geographic information from scanned maps using object-based image analysis and convolutional 

neural networks to classify and vectorize historic maps. The focus was set on the extraction of selected 

map symbols and land use and land cover classes from one of the most important historic map series 

of Austrian Empire, the Franciscean Cadastre (Franziszeischer Kataster). Results of this study should 

provide the foundation for potential large scale vectorization work of the cadastre and enable the 

quantitative analysis of the historic landscape and its transformation over 200 years. 

While the goals of the study were ambitious, not all objectives could be achieved. Map symbols could 

not be recognized with sufficient accuracy. Therefore, they were not included in the land use and land 

cover classification. The surface classification achieved a 90% overall accuracy for the Salzburg region 

with varying accuracies per class. The overall classification accuracy dropped significantly in the second 

study area located in the High Tauern region, indicating a limited ability of the classification approach 

to correctly classify severely degraded map sections. Further work in training and parameterization is 

required to ensure transferability in other regions of Salzburg. Despite these limitations, the study 

represents a step forward in making historical geographic data available for spatial analysis and may 

lay the groundwork for future studies that expand the dataset geographically. 

Keywords: 

Historical Geographic Data, Map Classification, Franciscean Cadastre, Object-Based Image Analysis, 

Multiresolution Segmentation, Convolutional Neural Networks  
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Abbreviations  
ANN  – Artificial Neural Network 

CNN – Convolutional Neural Network 

ESP  – Estimation of Scale Parameter 

GIS  – Geographic Information System 

LULC  – Land Use and Land Cover  

MRS  – Multiresolution Segmentation 

OBIA  – Object-Based Image Analysis 

SVM  – Support Vector Machine 

RF  – Random Forest 

 

  



5 
 

Contents 
Abstract ................................................................................................................................................... 3 

Abbreviations .......................................................................................................................................... 4 

1 Introduction ......................................................................................................................................... 8 

1.1 Historic Map Digitization ............................................................................................................... 8 

1.2 Literature Review .......................................................................................................................... 9 

1.3 Current Challenges in (Semi-)Automatic Map Processing .......................................................... 12 

1.4 Objectives and Rationale of the Study ........................................................................................ 13 

2 Theoretical Principles of Map Processing .......................................................................................... 14 

2.1 Map Processing Workflow .......................................................................................................... 14 

2.2 Image Preprocessing ................................................................................................................... 15 

2.3 Image Analysis ............................................................................................................................. 16 

2.3.1 Pixel-based Image Analysis .................................................................................................. 16 

2.3.2 Object-Based Image Analysis ............................................................................................... 16 

2.4 Image Segmentation ................................................................................................................... 18 

2.4.1 Overview Image Segmentation Techniques ......................................................................... 18 

2.4.2 Multiresolution Segmentation ............................................................................................. 19 

2.5 Image Classification ..................................................................................................................... 20 

2.5.1 Overview Machine Learning Image Classifiers ..................................................................... 21 

2.5.2 Convolutional Neural Networks ........................................................................................... 22 

2.6 Rule-based Classification ............................................................................................................. 25 

2.7 Accuracy Assessment .................................................................................................................. 25 

3 The Franciscean Cadastre................................................................................................................... 27 

4 Extracting Information from the Franciscean Cadastre ..................................................................... 29 

4.1 Software ...................................................................................................................................... 31 

4.2 Workflow ..................................................................................................................................... 31 

4.2.1 Preprocessing ....................................................................................................................... 32 

4.2.2 Map Symbol Recognition ..................................................................................................... 35 

4.2.3 LULC Classification ................................................................................................................ 37 

5 Results ................................................................................................................................................ 43 

5.1 Map Symbol Recognition ............................................................................................................ 43 

5.2 LULC Classification ....................................................................................................................... 45 

5.3 LULC Classification Accuracy Assessment ................................................................................... 47 

6 Discussion ........................................................................................................................................... 49 

6.1 Map Symbol Recognition ............................................................................................................ 49 

6.2 Map Segmentation ...................................................................................................................... 49 



6 
 

6.3 LULC Classification Accuracy ....................................................................................................... 51 

6.3.1 Class Accuracy ...................................................................................................................... 52 

6.3.2 Removal of Letters and Lines ............................................................................................... 54 

6.4 Strengths and Weaknesses of the Classification Approach ........................................................ 56 

6.5 Transferability .............................................................................................................................. 57 

7 Conclusion & Outlook ........................................................................................................................ 58 

References ............................................................................................................................................. 60 

Appendix ............................................................................................................................................... 64 

 

List of Figures 

Figure 1: Example map processing workflow based on Chiang et al. (2014). ....................................... 14 

Figure 2: Hierarchical structure of a simple CNN with two hidden layers (Trimble, 2024b). ................ 23 

Figure 3: Detail from the Sattler panorama by the Austrian painter Johann Michael Sattler (photo by 

WOKRIE (2015)). The painting captures the pre-industrial landscape of Salzburg during the creation 

of the Franciscean Cadastre. ................................................................................................................. 28 

Figure 4: Main study area around the city of Salzburg. ........................................................................ 30 

Figure 5: Second study area between Taxenbach and Rauris. .............................................................. 30 

Figure 6: Overview of the General Workflow. ....................................................................................... 32 

Figure 7: Legend of the Franciscean Cadastre from 1824 (Wikimedia Commons, 2014). .................... 34 

Figure 8: Calculated Accuracy of the CNN on training and validation samples between 1-20 epochs. 38 

Figure 9: Performance of the CNN between 1-20 epochs. ................................................................... 39 

Figure 10: Map symbol recognition results in Maxglan. ....................................................................... 44 

Figure 11: Falsely recognized round deciduous trees along one of the smaller rivers. ........................ 44 

Figure 12: Final LULC classification for the Salzburg area. .................................................................... 46 

Figure 13: Final LULC classification for the second study area between Rauris and Taxenbach........... 46 

Figure 14: Comparison of classification results near Aiglhof, Salzburg. ................................................ 50 

Figure 15: Comparison of the classification results near Staatsbrücke, Salzburg. ................................ 51 

Figure 16: Probability heatmap of the class 'Other' compared to the original map source. ................ 53 

Figure 17: Misclassifications at the Salzach river. ................................................................................. 55 

 

  



7 
 

List of Tables 

Table 1: Sample count for the different map symbol types before the sample augmentation. Sample 

counts of coniferous trees in the training area was low, necessitating data augmentation strategies.33 

Table 2: Sample Count for the LULC types before the sample augmentation. ..................................... 33 

Table 3: Accuracy assessment sample count for the LULC classification in the 'Salzburg-West' and 

High Tauern areas. ................................................................................................................................ 35 

Table 4: Each class was assigned to one of the three image object levels where it would produce the 

best results. ........................................................................................................................................... 41 

Table 5: LULC classification classes........................................................................................................ 45 

Table 6: Confusion Matrix of the ‘Salzburg-West’ study area. .............................................................. 47 

Table 7: Confusion Matrix of the study area between Rauris and Taxenbach. ..................................... 48 

  



8 
 

1 Introduction 

1.1 Historic Map Digitization  
The Anthropocene has drastically changed the Earth’s landscapes. The multitude of human 

interventions in nature has drastically altered our environment and led to increased awareness and 

research on their effects on humanity. Because landscape changes often occur rather slowly and 

change can occur gradually over several human generations, long-term studies are crucial to further 

facilitate understanding about our environment (Herold, 2018).  

Change can be assessed by either relying on model-based approaches, simulating the transformation 

based on conditions and assumptions, or by utilizing available historic documents and measurement 

series (Uhl et al., 2021b). Long-term land use and land cover (LULC) change studies use a variety of 

geoinformation sources including current hyperspectral and radar data, digital LULC maps, archival 

optical monochromatic airborne and multi-spectral satellite imagery, as well as older cartographic 

documents (Herold, 2018).  

As comprehensive remote sensing mapping only really started in the early 1970s with the launch of 

Landsat-1, large-scale mapping products for earlier periods are lacking and data availability gets 

increasingly sparse as you delve deeper into the past (Uhl et al., 2021b). And if historical imagery exists, 

it is often severely limited in its spatial or temporal extent, being only available for selected regions. 

This creates problems for large-scale geographic long-term studies (Herold, 2018). 

One way to reduce the issue of data availability is to use older geographic information sources, such 

as historic maps. In Europe, the first standardized mapping efforts began in the late 18th century  

(Bauer, 2017). Surveying projects documented a great variety of information that was of interest to 

the state such as the number of households, land ownership, agricultural yields, road networks, and 

military infrastructure. While these products were tailored to specific demands at the time, they today 

allow detailed insights into the landscape of their time and often present the only available source for 

LULC information, making them invaluable for long-term studies on landscape change. The problem 

with historic geodata is, that before using historical geographical data for quantitative analyses, it must 

be converted from its original paper map form into digital geodata. 

The transformation of the physical map into a digital format is done by scanning the map and storing 

the image in a digital raster format. The raster format saves the spectral properties of the map in 

discrete pixel values, but as no image interpretation is conducted, no information about the contents 

of the image stored, which limits the usability of raster files for spatial analysis in geographic 

information systems (GIS), requiring the further vectorization of the image file. 
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The traditional way of converting historical maps into geodata consists of the visual interpretation and 

manual vectorization of the scanned data source by a person that has knowledge in the historic context 

and the available tools. The task is time and resource expensive, which has in the past often limited 

the spatial and temporal scope of related studies (Zatelli et al., 2022a, Ignjatić et al., 2018, Herold, 

2018, Gobbi et al., 2019). It has also led to a general underutilization of historic geographic maps in 

geographic information science, although they are increasingly publicly available online as digitalised 

products, often through online databases of state archives and geoinformation offices.  

Therefore, many researchers have aimed at automating this tedious task. In the past, there were 

multiple drivers for the development of automatic map vectorization methods, which can generally be 

divided into three distinct stages: With the advent of computer systems and the first artificial 

intelligence and recognition algorithms in the second half of the 20th century, first research was 

dedicated to the application on maps. Later, with the development of the first geographic information 

systems and geospatial analysis tools, the demand for digital spatial information rose, leading to a 

renewed interest for the digitization of historic data. But methods were limited by the technology of 

its time. Today, the growing availability of digitally available historic maps and the continuing need for 

historical geodata has again renewed interest in automated map vectorization methods (Herold, 2018). 

1.2 Literature Review 
In the last decade, many studies were published that either aimed at developing new ways to extract 

information from historic maps or utilized a variety of established methods to vectorize old 

cartographic sources for historic analysis. The following section will attempt to summarize the state of 

the art of both the usage of historic maps for landscape change analysis and (semi-)automatic object 

recognition and classification approaches used for the vectorization of historic maps.  

Overall, a continuous growth in scientific literature can be observed. Chiang et al. (2020a) counted the 

number of published papers per year on Google Scholar containing the keywords ‘historical maps’ and 

‘analysis’ between 2001 and 2018, documenting an increase from 231 to 1370 papers. The results did 

include papers from top-ranked scientific journals, covering several academic disciplines and domains 

(Chiang et al., 2020a).  

Research in the field of map processing is broad and covers all parts of the map digitization process, 

from map scanning and georeferencing to image processing and vectorization. Chiang et al. (2014) 

highlighted that map processing approaches have been applied to various types of maps over the 

years, including cadastral or land register maps, road maps, hydrographic maps, city maps, utility maps, 

and topographic or other survey maps.  
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Most studies focused on map feature or cartographic symbol extractions on specific maps and only 

few research aimed at developing workflows that could be applied to all map types (Chiang et al., 

2014). 

An early study on the use of historic maps for LULC change analysis was conducted by Petit and Lambin 

(2002) who compared historical maps with remote sensing data in the Belgian Ardennes. They 

assessed the data integration and generalisation necessary to compare maps of different timeframes, 

confirming the value of historic data for long-term LULC analysis (Petit and Lambin, 2002). While they 

addressed cartographic challenges in comparing different map series, they did not aim at automating 

the vectorization process and therefore only applied their study to a rather small study area. 

Shortly after, Haase et al. (2005) analysed historical landscape change in Saxony, Germany using 

topographic maps from the 18th to 20th century. They concluded that historical maps pose a valid 

source to quantitatively assess structural landscape changes and that results can be used to predict 

future landscape change (Haase et al., 2005).  

Statuto et al. (2017) used historical maps from 1829 to 2013 in their landscape analysis of Southern 

Italy. They as well highlighted the importance of historical geographic data for the landscape change 

analysis, but as they chose a manual approach to map vectorization their study was constrained to an 

18 km² area (Statuto et al., 2017). Similarly, Gimmi et al. (2011) used manually vectorized historical 

maps for the assessment of wetland networks in the Swiss lowlands between 1850 and 2000.  

Subsequent research explored possibilities to automatically extract selected information, such as 

building footprints, street networks, LULC types, or text, from maps using different approaches. In 

addition, increased research was conducted to assess whether transferable workflows for large-scale 

vectorization works are possible. 

Godfrey and Eveleth (2015) developed an adaptable semiautomatic map vectorization approach using 

unsupervised classification in ArcGIS for Desktop. A year later, Iosifescu et al. (2016) extracted building 

footprints and water bodies from two 19th century Swiss topographical maps based on mathematical 

morphology operations using GDAL, OGR library, and Image Magick.  

Researchers at the University of Colorado Boulder led by S. Leyk, S. Uhl, and Y.-Y. Chiang from the 

University of Southern California developed multiple methods to digitize historic maps and large-scale 

map collections. They applied their vectorization approach to extract road networks (Uhl et al., 2022) 

and different land cover types (Uhl et al., 2021a) from various maps sources. They also assessed the 

usage of remote sensing derived data in combination with historic maps to analyse long-term urban 

growth (Uhl et al., 2021b).  
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Multiple studies centred around map digitization were also conducted by the Department of Civil, 

Environmental, and Mechanical Engineering at Università degli Studi di Trento and the Department of 

Humanities at Università degli Studi di Trento in Italy. Gobbi et al. (2019) developed new tools for the 

classification and filtering of historical maps. They chose a semi-automatic approach to successively 

filter out undesirable features, such as text, cartographic symbols, and lines. The tool was applied to 

several different historic maps sources and achieved high accuracies (Gobbi et al., 2019). Zatelli et al. 

(2019) applied the previously developed tools and workflow to a map section of the Franciscean 

Cadastre to assess the capabilities of OBIA for historic map classification compared to other traditional 

classification techniques using GRASS GIS and R. Their research concluded that ‘the OBIA approach has 

provided very satisfactory results with the ability to automatically remove the background and symbols 

and characters’ (Zatelli et al., 2019). In a subsequent study Zatelli et al. (2022a) developed specifically 

tailored OBIA workflow in GRASS GIS and R to extract thematic information from Cesare Battisti’s atlas 

of 1915. The study emphasised the significance of historical maps in ecology and climate change 

research. Vectorized historical maps enabled the reconstruction of forest cover, which was deemed 

crucial for understanding the impact of climate change on alpine ecosystems (Zatelli et al., 2022a). 

Zatelli et al. (2022b) modelled the LULC change in the Trentino region based multiple historical maps 

from 1859 to 1936 and aerial images from 1954 to 2015 using a FOSS4G approach. High accuracies 

over 94% were achieved and the preliminary results enabled the creation of future forest evolution 

scenarios for the next 85 years (Zatelli et al., 2022b). 

In Germany, Ulloa et al. (2020) created an semi-automatic map vectorization workflow to assess land 

cover changes in the Main river catchment, Germany using eCognition and OBIA. The approach proved 

to be successful in detecting and classifying the most important LULC types found in the map. 

While most research used traditional classification algorithms, recent work has also tested the ability 

of deep neural networks for map classification and text recognition. Uhl et al. (2018) used weakly 

supervised CNNs to segment features in historic maps. Then, Chiang et al. (2020b) explored the 

capabilities deep learning models for historical map feature recognition. 

Most recently, Kersapati and Grau-Bové (2023) have reviewed tested and compared the capabilities of 

CNNs and OBIA to extract geographic features from historic maps of the Bandu Islands, Indonesia. 

Results showed the superiority of CNNs to OBIA regarding statistical performance, but OBIA provided 

greater flexibility on multiple scales. 
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1.3 Current Challenges in (Semi-)Automatic Map Processing 
While research on automated extraction of geospatial information from historic maps is ongoing and 

significant progress has been made in the last decade, the complete automatization of the raster to 

vector conversion process has not yet been adequately solved (Ignjatić et al., 2018). Currently, several 

fundamental challenges remain.  

One persistent issue has been the data quality. As historic maps come in various forms and conditions, 

their quality is a crucial factor that must be assessed bevor any attempt of data extraction. 

Discolorations and paper yellowing in the original map source can lead to noise and additional 

challenges for recognition and classification algorithms (Herold, 2018). More quality issues can be 

introduced during the scanning process, where folds and holes between map sheets may cause gaps 

in cartographic information (Chen et al., 2021). Low resolution scans may also negatively image quality 

by affecting the colour grading, removing important detail, or introducing new image artifacts that 

could influence subsequent classification results. Much research therefore has been conducted to 

normalize and filter scanned historical maps in multiple pre-processing steps or to develop robust 

algorithms that can differentiate variations in colour and texture.  

Another major issue commonly found in historic map processing is the overall complexity and 

structure of historic maps. Recognition algorithms can face severe difficulties when dealing with 

historical maps due to overlapping text, lines, and symbols, particularly in areas with high information 

density. Additionally, size, shape, and colour can vary (Chen et al., 2021, Zatelli et al., 2019), as symbols 

were often hand-drawn.  The correct recognition of symbols and the extraction of text can therefore 

be particularly challenging, but the extent of these issue heavily depends on the type of map and its 

quality. Historic topographic maps for example often have low overall colour variations but many 

letters, lines, and text symbols. The extraction of information from these map types can therefore pose 

different challenges than other types of maps. 

The most important factor to consider in (semi-)automated map processing is to ensure the 

transferability of the workflow. A robust recognition strategy is crucial to a successful map vectorization 

(Herold, 2018), as the process aims to keep time consuming manual adjustments to the algorithms to 

a minimum. The quantitative advantages of automated approaches can be best played out by 

extending the geographic scale of the map digitization project. The recognition and classification 

algorithms therefore must be able to correctly identify features in new map regions with changes to 

map quality and characteristics. Low generalization abilities of the classification algorithms can 

significantly reduce the benefits of quantitative approaches, nullifying much of the time-consuming 

and resource-intensive labour spent on the development of the algorithms. Achieving high 
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generalization abilities of the map processing approach chosen is therefore one of the main goals in 

automatic map vectorization projects. 

Recognizing and addressing these issues is prerequisite to the generation of large-scale historical 

geodata collections and therefore has been a consistent goal in research in the last decades.  

1.4 Objectives and Rationale of the Study 
The aim of this master thesis is to develop a workflow for the automatic extraction of geographic 

information from the historical map series of the Franciscean Cadastre using Convolutional Neural 

Networks (CNNs) and object-based image analysis (OBIA).  

The study has three main objectives: 

1. Development of a workflow in eCognition for the extraction of map symbols, as well as the 

segmentation and classification of the most important LULC classes using OBIA and CNNs.  

2. Evaluation of the OBIA methods and CNNs regarding their ability to automatically classify 

historical maps. 

3. Creation of a vector data set of the Franciscean Cadastre, which can serve as a basis for further 

geographical analyses. 

Besides the three main objectives, four secondary objectives were determined: 

1. Creation of robust training and validation datasets that represent the characteristics of the 

digitized map source. 

2. Finding the best segmentation parameters for the breakdown of the image into image objects, 

as part of the OBIA process. 

3. Finding the best training parameters for the CNN. 

4. Improvement of the base classification by implementing an expert-based reclassification 

section that incorporates additional conditions for selected classes. 

Due to the availability of already digitized and georeferenced imagery of the Franciscean Cadastre, this 

study will omit parts of the preprocessing, focusing solely on the image analysis aspect of the map 

processing workflow, which will include the development of the CNN classification model and 

subsequent extraction of information from the historical map source.   
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2 Theoretical Principles of Map Processing 
Before describing the exact methodology that was chosen for the classification of the Franciscean 

Cadastre, it is necessary to outline the basic principles of map processing or image analysis in the broad 

sense. The following chapter will introduce the most commonly used image analysis principles and 

methodologies used in digital map processing. Many of them are closely related to and often derived 

from methods used in computer vision, image processing, remote sensing, and digital cartography.  

2.1 Map Processing Workflow 
The overall workflow of digital map processing can be divided into three parts. The first part is centred 

around the initial scanning and digitization of the original map source and the georeferencing of the 

image file. The second part then focuses on the recognition and extraction of geospatial information 

from the map image using different techniques that will be explained in detail in the following sections. 

The third and last part is then focused on the vectorization of the extracted information by converting 

the raster dataset into a geographic vector dataset. A general sequence of the map processing steps is 

displayed in Figure 1. 

 

Figure 1: Example map processing workflow based on Chiang et al. (2014). 
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As computer-based map processing approaches aim to extract information from digital raster images, 

the typical map processing workflows begins after the map scanning process and the creation of the 

digital image. The digitized raster image represents the spectral characteristics of the original map in 

a machine-readable format. Because the scanned map image does not contain any information about 

the location of the map’s content or its type of projection, the image is then georeferenced which 

provides missing spatial context to the data source. Alternatively, this data projection step can also be 

conducted at the end of the image processing. After this preprocessing of the image, the map image 

can be analysed and processed. The focus of all map processing methodologies usually lies in this 

section where the recognition and subsequent extraction of geographic information embedded within 

the map image is conducted. Workflows can be can be entirely automatic, require manual 

interventions during preprocessing/postprocessing, or be interactive (Chiang et al., 2014). 

2.2 Image Preprocessing 
Image preprocessing is often necessary to enhance the visual quality of the data source prior to 

conducting image analysis. Preprocessing encompasses a broad range of techniques and operations 

and may include noise reduction, pixel calibration, and standardisation to prepare the image for 

subsequent analysis. Preprocessing operations can be conducted on individual pixels, a local or 

neighbourhood environment or globally. Point operations target single pixels and do not consider the 

spatial organization of the image. Examples are contrast stretching, segmentation based on grey 

values, and histogram equalization. Local or neighbourhood operations use masks that include the 

spatial surrounding of the target pixel.  Examples include convolution, with image smoothing or 

sharpening being the most know types of convolutions, spatial features detection, such as line, edge, 

and corner detections, and morphology. Global operations take the whole image into account and 

include frequency domain operations. A commonly used preprocessing method is histogram 

equalization. Image histograms provide quantitative information about the distribution of pixel values 

and are used for numerous spatial domain processing techniques. Histogram equalization is used to 

spread the histogram of pixel values more evenly using the full potential range. Spatial image filtering 

techniques use a moving filter mask to recompute pixel values of the image. Image smoothing and 

blurring filters build weighted averages of their surrounding pixels. Different types of smoothing filters 

exist, with low-pass and Gaussian filters being commonly used to reduce noise in an image. Contrary 

to image smoothing, edge detection and enhancement filters aim at highlighting local changes in 

colour. Several edge detection filters exist, with gradient, Laplacian, and wavelet transform being the 

most common categories (Mendoza and Lu, 2015). 

In map processing, image preprocessing methods are commonly applied to improve the quality of the 

scanned map, prior to image analysis. Histogram stretching can be used to remove colour differences 
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between different map sheets, while smoothing and sharpening operations can be used to remove 

noise or highlight edges, depending on the properties of the map image. 

2.3 Image Analysis 
Centre of any computer-based image processing is the image analysis, which contains the detection 

and recognition of map features, their boundary delineation through segmentation, and the 

subsequent classification and extraction of features using various algorithms. When analysing map 

features, three different properties can be considered, colour, texture, and morphology. Colour 

analysis evaluates the spectral distribution of colours in the image, while texture analysis evaluates the 

spatial organisation of colours. Finally, morphology analysis describes geometric shape properties and 

size (Mendoza and Lu, 2015).  

Over time, two basic strategies of image analysis have emerged, pixelwise image analysis and object-

oriented image analysis. Both approaches differ fundamentally in how they handle information stored 

in the image. Pixelwise image analysis approaches use the absolute values of individual pixels to assign 

classes in the image. In contrast, object-oriented classification approaches, also called object-based 

image analysis, group statistically similar pixels in a preliminary segmentation step and then assign 

classes based on the geometric and spectral characteristics of the image segments (Gobbi et al., 2019).  

2.3.1 Pixel-based Image Analysis 
Pixel-based image analysis involves examining individual pixels in an image, focusing on the inherent 

information within each discrete pixel unit. This approach relies on the direct analysis of pixel values 

to extract features or perform basic image processing tasks. The fundamental concept is to treat pixels 

as standalone entities, making it suitable for tasks where local information is crucial. However, pixel-

based analysis may face limitations in capturing complex spatial relationships and holistic features 

within the image (Blaschke and Strobl, 2001).  

2.3.2 Object-Based Image Analysis 
With the advent of (very) high-resolution imagery in the early 2000s, limitations the pixel-based image 

analysis approach became increasingly evident. Unlike with earlier, coarser imagery, landscape 

features in high-resolution imagery were now often represented by multiple pixels, creating new 

classification challenges. As pixel-based image analysis methods do not take into account 

neighbourhood information, salt and pepper effects will become increasingly common in high-

resolution classifications (Blaschke et al., 2000) and therefore limit the classification accuracy of pixel-

based image analysis approaches (Blaschke and Strobl, 2001). Blaschke et al. (2014) identified five key 

issues to be addressed in pixel-based image analysis approaches: objects, shape, texture, context and 

pattern, as well as semantics and knowledge integration (Blaschke et al., 2014).  
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A new approach to image analysis was required, that was able to look beyond the individual pixel for 

the extraction of spatial features. Based on these assessments Blaschke and Strobl (2001) argued for 

a radically different handling of entities, introducing the geographic concepts of neighbourhood, 

distance, and location to remote sensing (and image analysis). Prerequisite for the use of spatial 

concepts in image analysis is to move away from per-pixel analysis by aggregating information into so-

called image objects, ideally representing spatially discrete objects in the imagery (Blaschke and Strobl, 

2001). The solution was object-based image analysis (OBIA).  

OBIA, also called geographic object-based image analysis (GEOBIA), is an image analysis approach that 

builds upon older remote sensing concepts such as image segmentation, edge-detection, feature 

extraction, and classification while providing a bridge to GIS by allowing for the integration of vector 

data and spatial analysis techniques into the classification workflow (Blaschke, 2010). For OBIA, a two-

step approach is generally applied:  

First, the image is partitioned into groups of spatially and spectrally homogeneous image objects, that 

represent real world objects on a defined scale using a region-based segmentation method. The 

identification of the correct scale is important, as meaningful objects only exist in a ‘window of 

perception’ (Marceau, 1999). Choosing the best fitting segmentation scale is highly depended on 

which objects are segmented. Finer scales might extract singular plants, while coarser scales might 

classify whole forests. It is also possible that different objects in an image appear different scales, 

requiring the introduction of sophisticated segmentation methods and hierarchy concepts (Blaschke, 

2010).  

In the second OBIA step, the image objects are then classified according to their geographical, 

geometrical, or statistical properties. Grouping homogeneous pixels together into image objects has 

several key advantages to image classification. On the one hand it prevents the salt and pepper effects 

present in pixel-based approaches, resulting in cleaner classification products. But more importantly, 

it allows the segments to have additional statistical information. This includes a variety of spectral (or 

in case of a map image colour) object descriptions such as minimum, maximum, and mean values, as 

well as additional spatial information for objects (Blaschke, 2010). This contextual information can help 

to improve classification results by either including more conditions in the initial base classification 

phase or by adding a follow-up reclassification using additional expert-based thresholds.  

While OBIA has been successful in improving classification accuracies on high-resolution imagery, 

some challenges remain. Especially, identifying the best scale for the image segmentation remains 

challenging. In addition, fuzzy or smooth transitions present challenges to the segmentation 

algorithms creating issues with the correct delineation of class borders (Blaschke, 2010). 
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2.4 Image Segmentation 
Image segmentation is a crucial step in every automated image analysis approach as seeks to identify, 

recognise, and delineate image objects, a task traditionally assigned to the human interpreter (Baatz 

and Schäpe, 2000). The discretization of the image is also a prerequisite for the subsequent 

classification. It is therefore important to achieve a robust segmentation result first, as any subsequent 

steps are highly dependent on the correct segmentation of the image (Mendoza and Lu, 2015). In OBIA 

segmentation is especially important as it produces the image objects that are used in the 

classification. The following section will provide an overview of the most important segmentation 

techniques used in image analysis. 

2.4.1 Overview Image Segmentation Techniques 
Over the time, several image segmentation techniques have been developed. Traditional segmentation 

methods can be grouped into pixel-based, edge-based, or region-based approaches (Blaschke et al., 

2014, Ma et al., 2017). Even though numerous segmentation techniques exist, research is active and 

new methods are being developed (Ma et al., 2017). Chiang et al. (2014) identified five commonly used 

image segmentation techniques used for map processing:  

Histogram thresholding is a pixel-based image analysis technique that divides the image into regions 

based on colour histogram of the image. Global and local maxima be set as criteria for class thresholds, 

if they correspond with the classes found in the map image. Colour histograms are usually created for 

each colour space dimension, but for the final assessment, individual results are usually combined. As 

histogram thresholding only evaluates colour histograms, spatial contiguity between classes is not 

explicitly accounted for, which can result in low accuracies for images without clear colour differences 

(Chiang et al., 2014). 

Colour space clustering an unsupervised and multidimensional thresholding technique, that uses all 

colour dimensions available in an image and then attempts to identify statistically significant clusters 

in the colour space. For the clustering, K-means or the fuzzy set-based alternative C-means are 

frequently used. Partitions are done by measuring the distance (e.g., the Euclidean distance) in a colour 

space between the clusters centre and each observation. To improve clustering accuracy, 

nonparametric clustering methods, such as the mean-shift algorithms can be applied. As with 

histogram thresholding, spatial contiguity is not accounted for (Chiang et al., 2014). 

Edge detection techniques try to detect contrasts between regions using local filtering operators. As 

they can only identify discontinuities in local colour values, they need to be applied in combination 

with other methods to be able to segment images. Edge detection methods generally show limited 
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success in images with poor contrasts or disconnected features or if significant noise is present (Chiang 

et al., 2014). 

Artificial neural networks have also been used in segmentation tasks. They generally provide better 

results than other methods when dealing with blurred or mixed pixels, but require long training times 

and cannot be applied universally to all map types (Chiang et al., 2014). 

Finally, region-based techniques divide images by grouping pixels into homogeneous groups by using 

region growing, region splitting, or region merging techniques. In difference to the previously named 

methods, region-based methods do take the spatial contiguity of homogeneous regions and 

connectivity between those regions into account, avoiding very small and scattered classes. Region-

based techniques assume, that neighbouring pixels generally have similar values, which can be 

grouped. At the start of the process, seeds are selected from which surrounding pixels are tested for 

similarity to the seeds colour values and homogeneity (Chiang et al., 2014). The then algorithm tries 

to (iteratively) split and merge adjacent groups of pixels until a defined condition is met (Hossain and 

Chen, 2019). Regions can be grown, split, and merged according to the predefined conditions of 

homogeneity (Chiang et al., 2014). 

2.4.2 Multiresolution Segmentation 
Among the many region-based segmentation techniques that have been developed, multiresolution 

segmentation (MRS) has been particularly successful when combined with an OBIA workflow. As 

landscape features can have different sizes and spectral properties, they are often only partially 

captured by traditional region-based segmentation methods, which are only to a specific scale. This 

presents an issue for precise LULC classifications, as different objects may appear at different scales 

(Blaschke et al., 2000, Drăguţ et al., 2014). 

MRS was first proposed by Baatz and Schäpe (2000) as a universal and reproducible method for image 

segmentation on multiple scales. The general approach resembles other region-based techniques, as 

it merges image objects based on a local homogeneity criterion. Each merging step is assigned with a 

merging cost, representing the degree of fitting. Merging stops if the least degree of fitting, the scale 

parameter, is exceeded. The merging process starts at the pixel level and then is executed bottom-up, 

merging neighbouring image objects if the homogeneity criterion is met. The homogeneity criterium 

itself is influenced by weighting spectral values of the pixels and the shape properties of the image 

objects (Baatz and Schäpe, 2000). The correct weighting of the segmentation parameters is depended 

on the aim of the classification process and the properties of the input image.  
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Analyses by Baatz and Schäpe (2000) came to the conclusion that while both colour and shape 

properties influence the segmentation results,  colour appears to be a better criterion for optimal 

segmentations (Baatz and Schäpe, 2000).  

A key challenge when using MRS algorithms lies in determining the optimal segmentation parameters. 

Especially the scale parameter, which controls the degree of heterogeneity within individual image 

objects, has a strong impact on the segmentation result. Smaller scale parameter values will generally 

lead to smaller segments with higher homogeneity, while a larger scale parameter allows for higher 

heterogeneity within image segments. But it is important to note that the scale parameter is not 

directly linked to a certain object size, which is why a trial-and-error phase is initially necessary for 

normal multiresolution segmentation to determine the scale parameter (Drǎguţ et al., 2010). 

To reduce the subjectivity inherent with the manual estimation the appropriate scale parameter, 

Drǎguţ et al. (2010) and Drăguţ et al. (2014) developed the estimation of scale parameter (ESP) tool 

for the Trimble eCognition software, which automates this task by calculating the local variance (LV) of 

object heterogeneity within a scene and then iteratively generating image objects at multiple scales in 

a bottom-up approach until the thresholds in rates of change of LV (ROC-LV) are met. The ROC-LV 

measures the rate of change of the LV between each level. If peaks in the ROC-LV are assessed, it is 

assumed that a level has been reached that best represents image objects of equal homogeneity. The 

tool was tested on different image types and landscapes and proved successful in finding correct scale 

parameters in various different environments (Drǎguţ et al., 2010).  

The ESP tool can work with multiple layers, extending its usage to multispectral data and improving its 

applicability in OBIA workflows. For the computation of the ESP on multispectral images, the mean LV 

value is calculated for each image level. In addition, the ESP tool automatically creates three optimal 

levels (with logarithmic scale increments) in either a hierarchical or non-hierarchical approach to help 

with the selection of the best scale parameter (Drăguţ et al., 2014). 

Despite the development of techniques for the optimization of the scale parameter, some challenges 

for region-based segmentation methods remain. In their meta-study Ma et al. (2017) identified five 

challenges: segmentation of linear objects, segmentation from low-level pixel grouping, multiscale 

segmentation, optimization of segmentation parameters, evaluation of segmentation results, and the 

continuing effort of achieving meaningful image objects from imagery (Ma et al., 2017). 

2.5 Image Classification 
Image classification, along with segmentation, is a crucial aspect of image analysis and map processing. 

Whilst segmentation divides an image into discrete classes, reducing the complexity of the original 

scene, the goal of classification is to assign pixels (or in case of OBIA image objects) to classes, giving 
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semantic meaning to parts of the image. Image classification can be conducted unsupervised or 

supervised. Supervised learning requires the definition of classes and the creation of labelled training 

datasets (Maxwell et al., 2018). While the creation preparation of supervised classifications is more 

resource intensive and time consuming, they usually provide higher overall accuracies. Because they 

are trained on labelled training data, model generalization and transferability to other imagery or map 

products can present a challenge.  

An important task in setting up machine-learning classifiers, is the parameterization. Finding the 

optimal value for parameters is important and can significantly influence classification results. To 

prevent model overfitting and low generalization ability, training and validation datasets are split and 

the classifier is then evaluated on new data that it has not been trained on (Maxwell et al., 2018). 

2.5.1 Overview Machine Learning Image Classifiers 
For the classification task, different machine-learning algorithms are used, ranging from traditional 

methods to complex deep learning techniques. Traditionally, a variety of different machine-learning 

classifiers have been used for image classification (Ma et al., 2019). The following section will attempt 

to provide a short overview of commonly used classifiers:  

Support Vector Machines (SVM) are a classification method aims at finding the optimal boundary 

between different classes by drawing a hyperplane in the feature space and simultaneously maximizing 

the margin, the distance between hyperplane and the nearest samples of each class. Non-linear 

relationships are addressed by SVMs by projecting the feature space to a higher dimension, better 

known as the kernel trick, which allows them to capture more complex patterns (Maxwell et al., 2018). 

Advantages of SVMs are the comparatively low number of training samples required for good 

classification results and their ability to handle high dimensional data, such as multispectral imagery 

(Ma et al., 2019). 

Decision Tree (DT) classifications are recursively splitting the input data based on thresholds. Repeated 

splitting creates tree-like branches that represent different paths, with the ends of the branches in the 

classification trees representing the final classes. If-then rules applied during the decision tree 

classification make DTs a simple classifier that produces fast results but is prone to non-optimal 

solutions and overfitting (Maxwell et al., 2018).  

Random Forest (RF) is an ensemble classifier that uses multiple DTs to overcome the weaknesses of a 

single DT. Final classes are calculated by taking the majority vote of all trees. It thereby reduces the 

issues connected with singular DTs (Maxwell et al., 2018). Compared to SVMs, RFs are easier to use 

and generally produce high accuracy classification results (Ma et al., 2019). 
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The k-nearest neighbour (K-NN) algorithm is unlike other classifiers, as it is not trained to produce a 

classification model. Each unknown sample is instead directly compared against the original training 

data and then assigned to the most common class that is nearest in the feature space (Maxwell et al., 

2018). 

Lastly, Artificial Neural Networks (ANN) emulate biological neural networks by organizing neurons in 

interconnected layers. Between the input and output layer are several hidden layers that connect the 

neurons or nodes to adjacent layers. Each connection node receives signals from the previous node, 

which are computed by a non-linear function, called the activation function. The signal is then sent to 

the next nodes, where the process is repeated. Each node also has a weight that influences the 

strength of the signal, thereby controlling the learning process. Nodes in ANNs are hierarchically 

structured, where each layer represents a step in the processing with different transformations. Signals 

travel from the input layer to the final output layer via the intermediate hidden layers. If an ANN has 

two or more hidden layers, it is considered to be a deep neural network (Ma et al., 2019).  

Although the concepts of ANNs are not new, their application in image analysis was limited for a long 

time, as they are considered to be slow to train, can produce non-optimal classifications, and are prone 

to overfitting. Additionally, the many user-determined parameters can make training of deeper 

networks challenging (Maxwell et al., 2018). These challenges combined with hardware limitations did 

restrict the practical application of ANNs for a long time and led to a focus on other classifiers. While 

many challenges persist, continuous advances in computer hardware, especially in graphics processing 

units (GPUs), have led to renewed interest and a surge in scientific publications since 2014. Because 

ANNs have been very successful in extracting high-level feature information, their application to high-

resolution imagery was evident for a long time. Recent research has shown that ANNs have been able 

to outperform other traditional classifiers, such as RF, SVM and DTs, in  supervised object-based image 

classification where none of them exceeded median accuracies of over 90% (Ma et al., 2019).  

2.5.2 Convolutional Neural Networks 
Convolutional Neural Networks (CNN) are one of the most widely used type of deep artificial neural 

network. The first modern CNNs were introduced by LeCun et al. (1989) where they were used to 

regcognize handwritten digits on letters of the U.S. Postal Service. The approach proved to be 

successful, as the model was able to learn the morphology and texture of different digits, providing 

good classification results and low overall error rates. It was also able to correctly classify atypical data, 

which made it more flexible than other approaches (LeCun et al., 1989). Subsequent research 

improved the model, but further major progress was limited by the high hardware requirements and 

the general lack of training data (Gu et al., 2018). 



23 
 

While CNNs were originally designed to process multiple array data sets, they were soon found to be 

well suited to process multi-band imagery, making them capable for colour image analysis.  Since then, 

they have been successfully applied for the analysis of high-resolution remote sensing imagery with 

spatial resolutions of less than 10 m (Ma et al., 2019), as well as historic maps (O'Hara et al., 2024). 

Research has shown that the design of CNNs, such as the number of feature maps and hidden layers, 

has direct impact on its recognition capabilities. As a rule of thumb: Shallow CNNs with few hidden 

layers are better suited to learn general features and detect edges, while deep CNNs with many hidden 

layers can recognize more specific features (Chiang et al., 2014), such as specific types of objects or 

map symbols. 

CNNs generally consist of three different types of layers: convolutional layers, pooling layers, and fully 

connected layers (see Figure 2). Like other ANNs, they are structured hierarchically, starting with the 

input layer. Then, convolutional layers and pooling layers are concatenated. The processing ends with 

a fully connected layer at the end. 

 

Figure 2: Hierarchical structure of a simple CNN with two hidden layers (Trimble, 2024b). 

The convolutional layer is composed of multiple convolution kernels, that compute different feature 

maps. Each neuron of a feature map is connected to other neighbouring neurons in the previous layer, 

creating a field of perception for the neuron in the previous layer. A new feature map is processed by 

convolving the input layer with a learned kernel and then applying an element-wise nonlinear 

activation function on the convolved results, typically the sigmoid function (Gu et al., 2018). 

The primary objective of the pooling layer is to establish shift-invariance by diminishing the resolution 

of the feature maps. As a pooling layer is usually positioned after a convolutional layer, each feature 

map of the pooling layer corresponds to the preceding feature map of the convolutional layer. Pooling 

operations are typically divided into average and max pooling. In a typical CNN, the kernels of the first 
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convolutional layer are designed to detect the most basic features such as edges and curves, while 

kernels in following layers aim to detect more abstract features, such as different types of digits or 

vegetation classes. The number of convolutional and pooling layers in a CNN therefore influences the 

ability to extract high-level feature representations. After several convolutional and pooling layers, a 

fully connected layer may take all neurons of the last layer and connect them to generate global 

semantic information. For classification  tasks, a softmax operator or a SVM may be used (Gu et al., 

2018). 

A key challenge in the creation of a CNN is the definition of weights and biases, which heavily influence 

classification results. Optimizing these parameters is therefore an important step in every training 

process. To be able to assess the level of optimization and update the model’s parameters, a loss 

function is usually calculated using stochastic gradient decent (Gu et al., 2018). 

Sample data augmentation sets to increase the amount of training samples using a broad variety of 

data transformations. Common augmentation methods in image analysis are geometric 

transformations, such as mirroring, rotating, and shifting, as well as various types of photometric 

transformations. As data augmentation does not require the manual selection of samples, it is 

especially useful, if there are no large quantities of training data available and the production of new 

samples is too time consuming. To prevent overfitting of the data, the training process can be 

terminated using early stopping, a method which halts further optimization if certain conditions are 

met. Training can be stopped either after a certain number of epochs has been passed or if a 

predefined training error is reached (Gu et al., 2018). Another way to improve a CNN model, proposed 

by Sergey and Christian (2015), is to use batch normalization. The method normalizes each training 

batch within the CNN and allows the model to use higher learning rates, reducing the overall training 

steps and training time necessary to reach sufficient classification accuracies (Sergey and Christian, 

2015). 

In recent years, CNNs have been used for a variety of different tasks, including image classification, 

object detection, object tracking, text detection and recognition, as well as scene labelling. While CNNs 

provide many advantages to traditional machine-learning techniques, the biggest barrier to their 

broad application still exists: Training CNNs and adjusting the models hyperparameters, such as 

learning rate, kernel size, convolutional filters, and number of layers, requires considerate knowledge 

and experience (Gu et al., 2018). 
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2.6 Rule-based Classification 
While machine-learning classifiers are a popular approach to image classification, alternatives exist. 

One alternative, that is also frequently used, is rule-based classification (also called expert-based 

classification). Rule-based classification is conducted by using expert rules and thresholds through the 

implementation of simple if-else clauses to (re-)classify pixels or image objects (Shivakumar and 

Nagaraja, 2023). Combining rule-based classification with supervised classification approaches can 

refine the overall classification process by adding further conditions that improve the accuracy for 

certain classes. It can also be used to retrospectively correct some issues related to machine-learning 

based classifications, such as classes that were not adequately covered by the provided training data. 

Classes can be split or merged through thresholds after the main classification has been conducted, 

creating more detailed classification results. For instance, it could be used to differentiate built-up 

structures into urban and rural based on spatial proximity. Rule-based classification is therefore 

frequently part of the OBIA framework where it helps to enhance classifications.  

2.7 Accuracy Assessment 
Once the initial classification results have been obtained, it is necessary to assess the model's 

performance to evaluate the overall effectiveness of the chosen approach. Accuracy assessment is a 

fundamental requirement in image analysis and map processing to evaluate the model's generalization 

ability and transferability to other datasets. For the evaluation, multiple criteria exist: Overall accuracy, 

precision, recall, and the F1 score (Kersapati and Grau-Bové, 2023).  

The criteria are calculated using the following equations:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
TP +  TN

TP +  FP +  FN +  TN 
) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
TP

TP +  FP 
) 

𝑅𝑒𝑐𝑎𝑙𝑙 = (
TP + TN

TP +  FN
) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = (
2 x Recall x Precision

TP + FP + FN + TN
) 

All criteria are calculated using the measured numbers of true positives (TP), false negatives (FN), false 

positives (FP), and true negatives (TN), obtained from the statistical comparison between the 

classification result and reference data (Kersapati and Grau-Bové, 2023). The creation of confusion 

matrices helps to visualize errors of omission and errors of commission in a matrix. The matrix contains 

all number of sample units and their classification class. Samples can be points, cluster of points, or 

polygons. Based on the sample distribution and differences between reference and classification data, 

several classification criteria can be calculated (Congalton, 1991).  
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Besides these statistics, Cohen’s Kappa has been used to assess classification results. Kappa is 

calculated using the following equation:  

𝐾𝑎𝑝𝑝𝑎 =
observed agreement − exspected agreement

1 − expected agreement
= 1 −  

1 − observed agreement

1 − expected agreement
  

The Kappa measure allows comparisons between the obtained classification results and a classification 

using random guesses. Kappa results are always less or equal to 1, where negative values indicate no 

improvements to a random classification (Kersapati and Grau-Bové, 2023).  

When performing accuracy assessments, several things need to be considered to achieve proper 

results. Congalton (1991) found five factors that can influence accuracy assessment results: ground 

data collection, classification scheme, spatial autocorrelation, sample size, and sampling scheme. 

Regarding the sampling size, they set the minimum number of samples per class to 50, but the exact 

count depends on the size of the area and the complexity of the scene. Another topic of scientific 

discussion is the sampling scheme, as it can heavily influence the accuracy assessment outcome. 

Opinions vary from simple random sampling to stratified systematic unaligned sampling (Congalton, 

1991). 
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3 The Franciscean Cadastre  
The Franciscean Cadastre (in German: „Franziszeischer Kataster“, alternatively „Franciszäischer 

Kataster“, was the first comprehensive and geometrically accurate mapping of parcels and land use in 

the Austrian Empire. Surveying was conducted between 1817 and 1861 on behalf of Emperor Francis 

I. after the end of the Napoleonic Wars and the restoration of the Empire and its territories as a result 

of the Congress of Vienna in 1815. The cadastre was created in several stages, with the province of 

Salzburg being surveyed between 1823 to 1830, while the evaluation and treatment of all complaints 

by landowners lasted until 1844. Goal of the great survey was to create a central detailed cadastral 

inventory which could serve as the basis for a long-planned reform in taxation. In difference to previous 

approaches, land taxes should be adjusted not only to yield and price ratios, but also to production 

costs and thus to the net agricultural income. Prerequisite for this tax estimation was an accurate, 

parcel-specific land survey of cultivatable land, which was realized by the new survey. The second 

reason for the creation of the cadastre besides the aforementioned tax reform was that such a cadastre 

would allow for the direct access to the resources of the empire’s inhabitants. It would support the 

creation of a unified fiscal space, an important step towards the formation of modern nation states. 

Already shortly after the first surveying and mapping was finished, the inventory proved to be an 

important tool for planning, as it contained detailed information about the Empire’s landscapes and 

economic life (Gebhart, 2011).  

The Franciscean Cadastre can be divided into several parts. The best-known part, which is at the same 

time the central part of the cadastre is the detailed cadastral plan, containing the parcel, building, and 

land-use information with boundary descriptions. Besides that, a land and building parcel protocol was 

created, an alphabetically ordered directory of land parcel and building owners, as well as a tax 

estimation operation, which served to determine the value of the income and production expenditure. 

For the documentation of demography, information of population, house, and household sizes within 

the cadastral municipalities were recorded, providing information about the social structure of society. 

The Franciscean Cadastre thus represents one of the most comprehensive and valuable historical 

sources of the 19th century for the area of the Habsburg Monarchy, providing a detailed insight (see 

Figure 3) into the agricultural economy on the eve of industrialization for large parts of central Europe 

and the Balkans (Bauer, 2017).  
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Figure 3: Detail from the Sattler panorama by the Austrian painter Johann Michael Sattler (photo by WOKRIE (2015)). The 
painting captures the pre-industrial landscape of Salzburg during the creation of the Franciscean Cadastre. 

As the Franciscean Cadastre was created using standardized methods, it is particularly well suited for 

quantitative landscape analysis. Therefore, it has been thoroughly analysed in research by historians 

and geographers to assess changes to the cultural landscape (Gabrovec et al., 2019, Dolejš and Forejt, 

2019). For example, Bicik et al. (2019) analysed the long-term land-use change in Czechia and Slovenia 

by using the Franciscean Cadastre as reference for 19th century land-use, and then compared both 

developments over course of the 20th century. Kupkova et al. (2019) analysed the development of land-

use and land cover in the Czech border regions after the expulsion of the ethnic Germans after the 

Second World War. The pre-1945 land-use data was in parts based on the Franciscean Cadastre. Foski 

and Lamovsek (2019) created landscape metrics indices for the monitoring of land-use change using 

the Franciscean Cadastre as point of reference. The impact of land-use change on ecosystem services 

was analysed by Ribeiro and Hribar (2019) who used data of the Franciscean Cadastre as supporting 

data source in their research. Because the Franciscean Cadastre was mapped on a fine scale of 1:2880 

for rural and 1:1440 for urban areas, providing detailed information about buildings, roads, and 

landscape (Land Salzburg, 2012), it allows for extensive LULC change analysis on local scales (Gabrovec 

and Kumer, 2019). Further studies that used the Franciscean Cadastre as a source of information have 

been summarized in Dolejš and Forejt (2019) meta-analysis about use of the Franciscean Cadastre in 

historical research.  
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4 Extracting Information from the Franciscean Cadastre 
The Franciscean Cadastre contains rich spatial information about large parts of Austria and the Balkans 

before the advent of widespread industrialization. Harnessing this information has been a goal of many 

studies in the past, but the quantitative use in GIS requires the digitization and vectorization of the 

original data source. As parts of the cadastre have already been scanned and georeferenced, this study 

is focused on the automatic classification and vectorization of parts of the Franciscean Cadastre 

instead. This chapter describes the workflow used to extract geographic information from the 

Franciscean Cadastre and transform it into vectorized geodata. 

The scanned data of the Franciscean Cadastre was kindly provided by the Department 7/06 – spatial 

data infrastructure, Land Salzburg. The data was acquired in the form of digitized and already 

georeferenced images in the GeoTIFF file format, projected in MGI Austria GK M31, the regional 

coordinate reference system. In total, two regions were requested, each covering about 20 km².  

The first region, used for the training and testing of the classification model, is located around the city 

of Salzburg (see Figure 4). This section was chosen, because it includes significant urban areas and 

different types of roads as well as LULC. In detail, it contains the historic city centre, the city districts 

Mülln and Nonntal at the gates of the city, and the then independent village of Maxglan in the west. 

This diversity in geographic features provides an excellent testing ground for classification and 

recognition algorithms aiming to identify different-sized features within the map. The inclusion of 

Salzburg in the research is also motivated by the heterogeneity in the quality of data sources. Some 

map sheets within the area of the digitized cadastre are discoloured, introducing challenges to the 

classifier. This aspect adds a layer of realism to the study, mirroring the conditions often encountered 

in the use of historic map products and map processing. In addition to the algorithmic challenges, the 

study area of Salzburg was also chosen because of the city itself. Its history has been subject to various 

research for a long time, but especially historic geographic data is still lacking, obstructing further 

research in this area.  

The second study area was set in the High Tauern mountain range between the villages of Taxenbach 

and Rauris in the south of the province of Salzburg (see Figure 5). The region provides a different 

cultural landscape with a predominant share of alpine pastures and coniferous forests and fewer roads 

and buildings. In addition, the region contains an additional map processing challenge in form of severe 

yellowing that is found in the original paper map sheets and has been transferred to the digitized map 

image. The second study area was mainly chosen to test the transferability and robustness of the 

classification approach in a different map section to assess the capabilities for potential large scale 

map vectorization works in the future.  
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Figure 4: Main study area around the city of Salzburg. 

 

Figure 5: Second study area between Taxenbach and Rauris. 
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4.1 Software 
Several commercial image analysis products are available, complemented by various free open source 

options, that are capable to automatically extract spatial information from images. For this study, the 

commercial product Trimble eCognition 10.3 was used, as it provides an extended palette of features 

for (object-based) image analysis including multiple algorithms for geographic information extraction 

and data fusion and the ability to combine remote sensing workflows and GIS analysis (Trimble, 2024c). 

For the creation of training, validation, and testing data, as well as the accuracy assessment, Esri ArcGIS 

Pro 3.2.1 was used.  

4.2 Workflow 
The workflow developed for the classification of the Franciscean Cadastre follows the general image 

analysis methodology described in chapter 2 Theoretical Principles of Map Processing’. The first part 

of the analysis is focused on the digitization and pre-processing of the map source. For the training 

and validation of the classification models, multiple training datasets have been created. Training sets 

were created for the LULC classes and for the selected map symbols.  

After preparing the input datasets, the working environment was then shifted to eCognition. In 

eCognition the main image analysis was conducted which did include the LULC classification and 

recognition of map symbols. Within the eCognition workspace the work was split into four projects 

representing the four map sections (grouped into two regions) received form the State of Salzburg. 

The training of the CNN classification model was conducted on the map image of eastern Salzburg 

using the training samples created in the preprocessing. Then, the model was applied to the map 

section of western Salzburg. Both map sections in the High Tauern region, were disregarded and only 

used for the final transferability assessment. As outlined in section 2.3.2 Object-Based Image Analysis’, 

the LULC image analysis consists of two main parts, the segmentation of the map into discrete 

homogeneous regions, and the map classification based on the class probability heatmaps generated 

by the CNN. To enhance the classification results and remove unwanted cartographic symbols and text, 

an expert-based reclassification was also implemented before the results were converted into a vector 

dataset and exported. In a final step, the classification results for both study areas were evaluated 

through an accuracy assessment. The confusion matrix of the accuracy assessment was created in 

ArcGIS Pro. An overview of the implemented workflow can be seen in Figure 6. 
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Figure 6: Overview of the General Workflow. 

The following chapters will describe in detail the algorithms and rulesets used for the processing of 

the Franciscean Cadastre, including parameters used for segmentation and classification. 

4.2.1 Preprocessing 
Prerequisite for any supervised classification using machine-learning algorithms is the creation of 

labelled samples. Samples are usually divided into training and validation sets by withholding some 

samples from the training process (Maxwell et al., 2018). The total quantity and the ratio between 

training and validation samples differs and is subject to scientific discussions, but commonly rations of 

90:10 or 80:20 for training and validation samples are used (O'Hara et al., 2024). For this project, two 
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different point-sample training datasets were created using ArcGIS Pro, one dataset for the training of 

the map symbol recognition algorithm, and one for the training of the LULC classification algorithm.  

For the map symbol recognition, 576 unique training samples were taken within the ‘Salzburg-East’ 

training area. Map symbol types were restricted to different tree and shrubbery types mainly, to limit 

the workload of the project. A total of six classes were defined, including oval and spiky coniferous 

symbols, oval and round deciduous symbols, meadows, and small shrubbery. Because map symbols 

are very unevenly distributed in the study area, counts per sample differed greatly as seen in Table 1 

below. 

Table 1: Sample count for the different map symbol types before the sample augmentation. Sample counts of coniferous 
trees in the training area was low, necessitating data augmentation strategies. 

Class Name Training Sample Count 

Coniferous oval 20 

Coniferous spiky 19 

Deciduous oval 117 

Deciduous round  257 

Meadows 94 

Shrubbery small 69 

 

The LULC classification model requires the creation of training sample points as well. 200 training 

samples were initially created. From this batch, a small number was split and used to validate the 

model during the training process. For LULC classification training sample dataset 14 classes were 

created (see Table 2 below), based on the main LULC types documented in the Franciscean Cadastre. 

Table 2: Sample Count for the LULC types before the sample augmentation. NoData has a lower training sample count, as 
the class is not very present in the region and the spectral complexity of the class with mostly black pixels is low. 

Class Name  Training Sample Count  Validation Sample Count 

Agriculture 160 20 

Black Line (BLine) 160 20 

Brown Path (BPath) 160 20 

Forest 160 20 

Garden 160 20 

Meadow 160 20 

NoData 100 20 

Other 160 20 

Red Line (RLine) 160 20 

Red Path (RPath) 160 20 

Red Urban (RUrban) 160 20 

Water 160 20 

Yellow Path (YPath) 160 20 

Yellow Urban (YUrban) 160 20 
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The different classes in the LULC classification dataset can be categorized into three distinct groups. 

The first group contains cartographic classes that do not directly represent LULC but cover significant 

parts of the image. They must be included in the classification model because they represent 

significant parts of the map but will be eventually removed at a later stage in the classification. This 

group is comprised of black line, red line, and no data classes. The second group is made up of red 

urban and yellow urban areas which represent built-up areas, and brown path, red path, and yellow 

path, which are different types of road classes. The remaining classes are part of the core LULC group, 

comprised of agriculture, forest, garden, meadow, water, and others, that make up most of the land 

cover. 

While the original Franciscean Cadastre contains several more classes and subclasses, only the ones 

with distinct colouring can be considered. Further differentiation and subdivisions into different types 

of gardens, agriculture, and forests in the original maps were made using map symbols including 

different types of trees, crops, abbreviations, and icons (see Figure 7). To be able to extract those 

classes, map symbol recognition is required, which was addressed in the second part of the 

classification methodology.  

 

Figure 7: Legend of the Franciscean Cadastre from 1824 (Wikimedia Commons, 2014). 
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Besides LULC classification samples taken in the ‘Salzburg-East’ training area, additional accuracy 

assessment point samples were collected in the ‘Salzburg-West’ and High Tauern study areas. For the 

generation of sample points, a stratified random approach with a target of 500 points was chosen to 

better reflect the distribution of classes in the study areas. Samples were generated in ArcGIS Pro using 

the ‘Create Accuracy Assessment Points’ geoprocessing tool. The number of points generated per class 

varies based on their share of land cover (see Table 3).  

Table 3: Accuracy assessment sample count for the LULC classification in the 'Salzburg-West' and High Tauern areas. 

Class Name AA Samples - Salzburg-West AA Samples - High Tauern 

Agriculture 268  

Brown Path (BPath) 7 9 

Forest 29 84 

Garden 16 4 

Meadow 123 412 

Other 21 2 

Red Path (RPath) 9 5 

Red Urban (RUrban) 9  

Water 29 18 

Yellow Path (YPath) 1 1 

Yellow Urban (YUrban) 8 9 

 526 in total 544 in total 

 

As the samples were generated based on a stratified random approach, they are not distributed 

equally between the different classes. For example, yellow paths were only sampled once for each 

location, and in the High Tauern area agriculture and red urban classes were missing entirely.  

4.2.2 Map Symbol Recognition 
As a cadastral map, the Franciscean Cadastre contains a great variety of information about the use of 

land parcels. Information is conveyed using different colours, textures, and symbols. The map symbols 

support the classification of different LULC classes, especially vegetation, providing detailed 

information about the exact type of forests, gardens, and meadows. Information about road types is 

also enhanced by the map symbology, where the existence of trees points to avenues.  

Six different vegetation symbols were identified for the image analysis. The classes were grouped into 

coniferous trees (containing an oval and a spiky type), deciduous trees (containing an oval and a round 

type), small shrubbery, and meadows. The meadows were symbolized by the letter m, indicating 

meadows in areas where detailed colouration would not be applicable. All map symbols were coloured 

in a dark brown to black colour tone. For the recognition and extraction of the different map symbols, 

a deep learning approach was chosen over template matching, as the map symbols are handwritten 

and come in variations which could provide issues with simpler template matching approaches. The 
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general workflow for the map symbol recognition is based on a tutorial for object recognition in 

eCognition by Trimble (Trimble, n.d.), with adjustments made to be able to classify multiple symbol 

types simultaneously. 

4.2.2.1 Training 

The training process started with the import of the map symbol training samples and the creation of a 

buffer around the training points with a 7-pixel offset. Afterwards, the target symbols were created 

using a vector-based segmentation on the buffered samples layer, resulting in a new level called 

Level_S3. On Level_S3, the segments were classified based on the class name in the training samples 

dataset. To generate non-target segments, a new brightness layer was calculated by using the 

algorithm ‘layer arithmetics’ and the formula: 
(𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒)

3
. The brightness layer was then 

smoothed with a Gaussian filter with a kernel size of 5, followed by a multi-threshold segmentation 

that was applied to detect and segment unclassified areas below a threshold of 140. The darker areas 

which did not intersect buffered training points were then classified as non-target. After creating 

sample and non-sample segments, all class segments were split into image segments using chessboard 

segmentation. 

After completing the pre-processing phase, the 'generate labelled sample patches' ruleset was used to 

generate sample patches for the training. A total of 2000 samples were generated for the classes 

‘Coniferous_oval’ and ‘Coniferous_spiky’, with a sample patch size of 32 and using the red, green, and 

blue image layers. As the initial sample collection only generated insufficient numbers of samples for 

these two classes, sample augmentation techniques were used to increase the sample size artificially 

to 8000 per class to enhance the CNN algorithm's robustness. The input sample size was multiplied by 

four using sample rotation. Samples were rotated between zero and four degrees and only a slight 

rotation was permitted as symbols are typically not rotated on maps, and higher rotations could result 

in false detections. Horizontal or vertical flips were also disabled, as symbols are not symmetrical and 

cannot be mirrored. Sample patch normalization remained disabled. The other four sample classes 

‘Deciduous_oval’, ‘Seciduous_round’, ‘Shrubbery_small’, and ‘Meadows’ 8000 sample patches were 

generated using no sample augmentation, as their input sample size was higher than for the coniferous 

samples. For the non-target sample class, which mostly contained letters and lines, 8000 sample 

patches were generated using additional sample augmentation with a 4x multiplier using utilizing 

horizontal and vertical flips to get to a final sample patch count of 31920. More samples were 

generated for the non-target class because it is the dominant class on every map. 

After generating sample patches for each of the seven classes, the CNN model was created and 

adjusted for symbol detection. The model was set to use only one hidden layer with a kernel size of 13 
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and 40 feature maps. Batch normalization and max pooling were enabled. The model was then trained 

for one epoch on the shuffled training data. For the training, the learning rate was set to a value of 

0.0015 at 2500 training steps with a batch size of 32 to ensure that the model would see each sample 

exactly once. Once the model was trained, it was saved, and all image layers and object levels were 

deleted. 

4.2.2.2 Symbol Extraction 

After switching the project to the ‘Salzburg-West’ study area, the trained model was applied to 

generate the probability heatmaps. The generated heatmaps were then smoothened using a Gaussian 

filter with a kernel size of seven, to reduce noise. Then, local maxima in the heatmaps were detected 

by dilating the classes using the ‘pixel filter 2D’ ruleset. For this ruleset, the morphology filter option 

was chosen. The dilation operation was iterated nine times. Target locations for the symbols were 

calculated using the ‘layer arithmetics’ ruleset and a threshold of 0.95 likelihood using the following 

equation:  

𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑂𝐶 = (ℎ𝑒𝑎𝑡𝑚𝑎𝑝_𝑙𝑜𝑐𝑎𝑙𝑀𝐴𝑋 = ℎ𝑒𝑎𝑡𝑚𝑎𝑝&(ℎ𝑒𝑎𝑡𝑚𝑎𝑝_𝑙𝑜𝑐𝑎𝑙𝑀𝐴𝑋 > 0.95)) ∗ ℎ𝑒𝑎𝑡𝑚𝑎𝑝 

To increase the area of the target locations, the dilating morphology filter was applied a second time 

with three iterations. Afterwards, a new image object level called ‘Level_Symbols’ was created using 

multi-threshold segmentation, which created classified segments around the target locations with a 

greater than 95% likelihood of being certain map symbols. In a last step, the segmented areas were 

converted to points by using the ‘convert image objects to vector objects’ ruleset. The location of the 

individual points was set to the centre of gravity of the image objects. Then, the points dataset was 

exported as shapefile with the ‘export vector layer’ algorithm. 

4.2.3 LULC Classification 

4.2.3.1 Training 

Like the training of the map symbol recognition model, the training of the LULC classification model 

was conducted in the ‘Salzburg-East’ study area. After importing the training and validation samples 

for the LULC classification, all sample points were buffered using a round buffer with a radius of nine 

pixels. Through a vector-based segmentation, the buffered samples converted to image segments in a 

new image object level. On the new level, the image objects were classified based on the class 

attributes of the overlapping samples. To prevent training issues with samples close to the image 

border, all samples with a distance less or equal to 24 pixels to the border were unclassified. 

Afterwards, sample patches were generated using the ‘generate labelled sample patches’ algorithm. 

In difference to the training of the map symbol recognition model, no non-target classes were defined, 

as the whole image would be classified with the previously defined LULC classes. 
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To increase the number of samples and therefore the robustness of the algorithm, data augmentation 

methods were again implemented. Image rotation was introduced using 12 different rotations. 

Additionally, samples were flipped horizontally, and vertically to increase the sample variety. The 

sample patch size was set to 48x48 pixels. For the training of the LULC classification model 168000 

training samples and 33600 validation samples were generated, covering all 14 classes. 

After generating the sample patches, the neural network was created. The CNN was designed with two 

hidden layers. The first hidden layer had a kernel size of 3 and 12 feature maps and used max pooling, 

while the second hidden layer had a kernel size of 3 and 24 feature maps. In difference to the first 

hidden layer, the second hidden layer would have no max pooling. Batch normalization was activated. 

The training was conducted with a learning rate 0.0006 and 5250 training steps with a batch size of 32. 

The best patch size for the classification of historic maps is the topic of scientific discussions. For this 

approach, a relatively small patch size was chosen because the map contains very fine lines and 

symbols. But other studies such as O'Hara et al. (2024) have also achieved success with larger samples 

patch sizes up to 512x512. Parallel to the training of the algorithm, the model was validated with the 

the validation dataset. Training and validation steps were adjusted so that all samples would be used 

during one run of the algorithm. Each epoch, training loss and validation loss, as well as training 

accuracy and validation accuracy were written into an array and before each new training round all 

samples, including the validation samples, were shuffled to prevent the algorithm from recognizing 

patterns in the samples.  

 

Figure 8: Calculated Accuracy of the CNN on training and validation samples between 1-20 epochs. Training accuracy 
increase from 87% to 95%, while validation accuracy increases from 87% to 90%. While both values increase, the curves 
start to flatten out and reach a plateau at around 90% (validation accuracy) and 96% (training accuracy). 
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The training was run for several epochs with the aim to increase the overall accuracy of the model. 

During the training, the training and validation accuracy kept increasing until it reached a plateau at 

around 95% and 90% respectively (see Figure 8).  

 

Figure 9: Performance of the CNN between 1-20 epochs. While the training loss continuously decreases from 0.46 to 0.13, 
validation loss stays at around 0.33. 

The validation loss slowly started to increase again at epoch 15 (see Figure 9), signalling increasing risk 

of overfitting. As overfitting leads to deteriorating generalization capabilities, training was ultimately 

stopped after 10 epochs, using the early stopping method described in section 2.5.2 Convolutional 

Neural Networks’. After concluding the training, the training statistics were exported, and the model 

was saved. 

4.2.3.2 LULC Segmentation and Base Classification 

For the classification of the LULC classes, the project was switched to the ‘Salzburg-West’ study area. 

In a preprocessing step, the brightness values of the map image were again calculated. Then, the 

previously trained classification model was imported and executed, creating a probability heatmap for 

each of the 14 training classes. To reduce potential noise and errors on the pixel level, each heatmap 

was also smoothened using a simple Gaussian filter with a kernel size of 15. 

The OBIA classification was divided into three parts, the image segmentation, the base classification 

of the image objects, and the expert-based reclassification. For the segmentation of the image, the 

MRS algorithm was used. Advantages of this segmentation approach have been discussed in the 

section 2.4.2 Multiresolution Segmentation’. As the map contains image objects of different size and 

scale, three hierarchically structured segmentation levels were created (Level_0, Level_1, Level_2).  
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The Estimation of Scale Parameter (ESP) 2 tool was used to statistically determine the most suitable 

scales for segmentation. A shape value of 0.1 and a compactness value of 0.5 were selected for the 

segmentation, which maximized the weighting of colour in relation to shape. The ESP2 tool identified 

three optimal levels, with a scale of 433, 133, and 83, with 83 being the smallest.  

Each level represented different map characteristics. The largest segmentation level, level 433, was 

suited to segment whole agricultural fields and other large patches. The smaller level 133 was able to 

represent road networks and smaller gardens and meadows, while the smallest level, level 83, was 

able to accurately delineate buildings and letters. As the map also contains fine lines which were not 

well detected by the smallest level 83, the decision was made to risk oversegmentation and use a 

smaller scale of 33 for the image segmentation instead. The other segmentation levels, 133 and 433 

were kept unchanged.  

After conducting the segmentation of the image, the map image was ready to be classified. 

Classification was applied to all three scales based on the probability heatmaps generated earlier, 

creating three different classifications. The results of the base classification were copied and exported.  

4.2.3.3 Expert-based Reclassification 

In order to improve the classification result of the base classification, an expert-based reclassification 

phase was added. All previously classified levels (0-2) were copied to a new map. As image objects 

occur on different levels, classification accuracy varies between individual classes. For larger map 

features, such as agricultural fields, classification accuracies were generally higher on larger scales. 

Linear features, such as roads, or features with varying size, such as bodies of water, were best 

represented on image object level ‘Level_1’, while small scale features such as buildings or cartographic 

letters and lines were only correctly segmented on the smallest image object level.  
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Table 4: Each class was assigned to one of the three image object levels where it would produce the best results. 

Level_0 (scale parameter 433) Agriculture, Forest, Garden, Meadow, Other 

Level_1 (scale parameter 133) RPath, BPath, Water 

Level_2 (scale parameter 33) BLine, RLine, NoData, RUrban, YUrban, YPath 

 

Therefore, to improve the overall classification accuracy, a rule-based reclassification classification was 

conducted using all three levels. Table 4 shows the image object levels and classes used in this 

classification. For this the classifications on ‘Level_0’ from the classes ‘Agriculture’, ‘Forest’, ‘Garden’, 

‘Meadow’, and ‘Other’ were taken over to the smallest image object level. The same was done for 

‘Level_1’ where ‘RPath’, ‘BPath’ and ‘Water’ classifications were transferred to ‘Level_2’. After copying 

the classification results of ‘Level_0’ and ‘Level_1’ to the smallest segmentation level, both were 

deleted. All further reclassifications were only applied to ‘Level_2’.  

For the refinement of the classification results additional conditions were added. The first step in the 

class refinement was the improvement of letters and lines. Red and black letters and lines were 

classified well overall, but some parts were not detected. As both classes generally have low 

brightness, objects with a mean brightness smaller or equal to 130 were reclassified to ‘RLine’ or 

‘BLine’. If the class ‘BLine’ had a mean brightness of smaller or equal to 20, then the class would be 

reclassified as ‘NoData’. If remaining image objects of the class ‘BLine’ had a mean likelihood of greater 

or equal than 25% to be forest it was reclassified as ‘Forest’. ‘BLine’ image objects which had a mean 

likelihood of greater than 10% to be forest and which bordered a forest class, were reclassified as 

forest. This was repeated 10 times. ‘NoData’ with a mean brightness greater than 20 was reclassified 

as one of the other LULC classes based on mean likelihood. Classes with a mean likelihood of greater 

or equal than 80% to be water would be classified as class ‘Water’. ‘Water’ would be reclassified to 

one of the other LULC classes if the mean likelihood to be water was smaller than 10%. ‘YPath’ would 

be reclassified to ‘YUrban’ if it shared a relative border to ‘YUrban’ of greater or equal than 10%. 

Additionally, ‘YPath’ would be classified as ‘YUrban’ if mean likelihood was greater or equal than 20% 

to be ‘YUrban’ and the distance to ‘RUrban’ is smaller or equal than 300 pixels. ‘RPath’ was refined by 

reclassifying ‘RPath’ as ‘RUrban’ if the total area was smaller or equal than 3000 pixels, the distance to 

‘RUrban’ was smaller or equal than 300 pixels, and the mean likelihood to be ‘RUrban’ was greater or 

equal than 20%. To improve the class ‘Garden’, image objects with a polygon compactness of smaller 

than 0.1 and a relative border to ‘Meadow’ of greater or equal than 25% would be reclassified as 

‘Meadow’. Similarly, ‘Meadow’ with a polygon compactness of smaller than 0.1 and relative border to 

‘Garden’ of greater or equal than 25% would be reclassified as ‘Garden’. 
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After this first reclassification round, all segments of the same class were merged using the ‘merge 

region’ algorithm. Then, the second refinement step was conducted, improving the class ‘RUrban’. 

Urban classes were reclassified if they were fully surrounded by classes which would be very unlikely 

to surround buildings, such as agricultural fields or roads. ‘RUrban’ with a relative border to 

‘Agriculture’ of 100% and mean likelihood to be ‘RLine’ of greater or equal to 20% was reclassified to 

‘RLine’, while ‘RUrban’ with a relative border to ‘BPath’ of 100% and a mean likelihood of greater or 

equal to 20% to be ‘RLine’ was reclassified as ‘BPath’.  

After applying these threshold-based reclassifications, the remaining cartographic classes were 

removed. As letters and lines on the scanned map were not part of LULC, they had to be removed from 

the classification. In the initial classification this information had been classified as ‘BLine’, ‘RLine’, and 

‘NoData’. To remove these classes from the map, the eCognition ruleset ‘pixel-based object resizing’ 

was used, that allows neighbouring classes to grow pixel for pixel into the selected classes. 100 cycles 

were set which would assure that all areas covered by letters and lines would be eventually replaced 

by their neighbours. After running the ruleset, the remaining classes were merged again.  

In a final step, the classification was cleaned using the ‘remove objects’ ruleset. At first, ‘BPath’ and 

‘RPath’ were removed if they were less than 3000 pixels in size and were 100% enclosed by the classes 

‘Agriculture’, ‘Forest’, ‘Garden’, ‘Meadow’, or ‘Other’. Then, ‘Garden’, ‘Forest’, and ‘Meadow’ were 

removed, if their respective pixel count was less than 3000 pixels and they were at least 70% enclosed 

by either ‘Agriculture, ‘Forest’, ‘Garden’, ‘Meadow’ or ‘Other’. The class ‘Other’ was replaced by 

‘Agriculture’, ‘Forest’, ‘Garden’, or ‘Meadow’ if the pixel count was less than 5000 pixels and the relative 

border to one of the other classes was greater than 70%. In the end the class ‘YPath’ was replaced by 

neighbouring ‘Agriculture’, ‘Forest’, ‘Garden’, ‘Meadow’, or ‘Other’ if its pixel count was less than 5000 

pixels and the relative border to one of these classes was greater than 70%. Then, all classes were 

merged once again. The reclassification result was copied to the map ‘Result’ and exported as a 

shapefile vector dataset, including the most important image object attributes, such as brightness, 

name, mean blue, mean, green, mean red, the mean likelihood for each class, and the number of 

pixels.  

4.2.3.4 LULC Accuracy Assessment 

After finishing the expert-based reclassification, the accuracy of the final classification result was 

assessed. For this task, the working environment was switched to ArcGIS Pro. The vector dataset of 

the classification results and the generated accuracy assessment points were imported. With the 

‘Compute Confusion Matrix’ geoprocessing tool, an error matrix was calculated, containing statistical 

information about the classification, including values for overall accuracy, producer’s and user’s 

accuracy, and Cohen’s Kappa. The results were then exported. 
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5 Results 
The following chapter presents the obtained results of the map processing workflow. Like the general 

image analysis workflow, the result is separated into two parts, the recognition of selected map 

symbols and the classification of different LULC types. All datasets, including classification results and 

accuracy assessments are available on the project’s GitLab page1 and on the university SharePoint2. 

The final map product for both study areas is also available in the Appendix. 

5.1 Map Symbol Recognition 
Map symbols are important sources of information in maps. In the Franciscean Cadastre, they provide 

valuable additional contextual information for various surface area classes. For example, the exact type 

of forest is indicated by either deciduous or coniferous tree symbols on a dark brown background, 

which adds further information about land cover that cannot be extracted from the map using colour 

information alone. Therefore, one of the research objectives in this study was to assess if map symbols 

could be recognized using CNNs and if they could be utilized to further improve the classification result.  

For this task, six different map symbols were identified, and extracted: Coniferous (oval and spiky), 

deciduous (oval and round), meadows, and small shrubbery. Unfortunately, the overall results 

obtained by the workflow were not accurate enough to be usable for further classification tasks. While 

many symbols were correctly detected, several false positive identifications were also made, which 

reduced the accuracy of the result and its usability for further classification tasks. The identified issues 

were prevalent to all six map symbol classes. Meadows, for example, were often correctly detected, 

but the algorithm simultaneously produced several false positives as well (see Figure 10). For the other 

classes the overall accuracy was mixed as well, with many map symbols being correctly identified but 

several false positives and false negatives reducing the validity of the dataset. Figure 11 illustrates the 

erroneous detection of round deciduous trees near a small river. Besides detections of symbols by the 

CNN model, there were also issues with the identification of local maxima in the probability heatmaps 

which influenced the final accuracy. While most detections did not overlap each other, some areas 

produced multiple local maxima that were closely located next to each other, creating several points 

for one map symbol. 

Due to the mixed accuracy and the large scope of work any subsequent refinements to the workflow 

were omitted and the map symbol recognition model was not applied to the second study area. 

 
1 https://git.sbg.ac.at/s1039004/historic-map-classification  
2 https://plusacat-
my.sharepoint.com/personal/simon_meyer_stud_plus_ac_at/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fsi
mon%5Fmeyer%5Fstud%5Fplus%5Fac%5Fat%2FDocuments%2FHistoric%5FMap%5FClassification%2FHMC%5F
Project&ga=1  

https://git.sbg.ac.at/s1039004/historic-map-classification
https://plusacat-my.sharepoint.com/personal/simon_meyer_stud_plus_ac_at/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fsimon%5Fmeyer%5Fstud%5Fplus%5Fac%5Fat%2FDocuments%2FHistoric%5FMap%5FClassification%2FHMC%5FProject&ga=1
https://plusacat-my.sharepoint.com/personal/simon_meyer_stud_plus_ac_at/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fsimon%5Fmeyer%5Fstud%5Fplus%5Fac%5Fat%2FDocuments%2FHistoric%5FMap%5FClassification%2FHMC%5FProject&ga=1
https://plusacat-my.sharepoint.com/personal/simon_meyer_stud_plus_ac_at/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fsimon%5Fmeyer%5Fstud%5Fplus%5Fac%5Fat%2FDocuments%2FHistoric%5FMap%5FClassification%2FHMC%5FProject&ga=1
https://plusacat-my.sharepoint.com/personal/simon_meyer_stud_plus_ac_at/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fsimon%5Fmeyer%5Fstud%5Fplus%5Fac%5Fat%2FDocuments%2FHistoric%5FMap%5FClassification%2FHMC%5FProject&ga=1
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Further research focused solely on the classification of LULC types, without the use of the map symbol 

dataset. 

 

Figure 10: Map symbol recognition results in Maxglan. Meadow symbols indicated by the letter 'w', were mostly detected, but 
several false positives and false negatives can be identified in the image subset. False positives can be found near block letters 
and lines, which contain similar colour properties. 

 

Figure 11: Falsely recognized round deciduous trees along one of the smaller rivers. 
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5.2 LULC Classification 
The main objective of the study was the (semi-)automated extraction of geographic information from 

the Franciscean Cadastre. As the cadastre was not only developed for the documentation of land 

properties, but also for tax estimations, it includes detailed information about the usage of each plot 

of land. For the classification of different LULC types in the Franciscean Cadastre, 14 classes were 

initially selected for training, including two classes to detect black and red letters and lines in the map 

image, as well as one class to detect black no data regions (see Table 5).   

Table 5: LULC classification classes. 

LULC Classes Temporary Classes  

(removed during classification) 

▪ Agriculture 
▪ Forest 
▪ Garden 
▪ Meadow 
▪ Other  
▪ Water 

▪ Red urban (RUrban) 
▪ Yellow urban (YUrban) 
▪ Brown path (BPath) 
▪ Red path (RPath) 
▪ Yellow path (YPath) 

▪ Black letters and lines 
(BLine) 

▪ Red letters and lines 
(RLine) 

▪ No data (NoData) 

 

In addition to the three temporary classes, 11 LULC classes were chosen to represent the various 

surface types documented in the cadastre, as well as different road types and buildings (see Figure 7). 

Classifications were conducted for both study areas. The first study area around Salzburg was used to 

test and improve the classification workflow, while the second study area between Rauris and 

Taxenbach was mainly used to assess the transferability of the approach to different sections of the 

cadastre, especially to areas with a very low quality of the physical map source. 

Overall, the results of the LULC classification are satisfactory for the Salzburg area, but significantly less 

accurate in areas with degraded map quality, especially in the second study area. In the Salzburg study 

area, most classes were successfully delineated and classified, and only minor, small scale 

misclassifications were present in areas with blurry boundaries. A main classification problem was the 

differentiation between the class ‘Water’ and ‘Other’, as both classes lack a distinct colourization. The 

class ‘Water’ is frequently not presented with a contiguous colourization, but by a fine blue 

colourization of the class borders instead. This results in misclassifications by the CNN in the central 

areas of the class which are then wrongly assigned as ‘Other’, a class designed to represent non-

classified areas on the map. Classification results for both study areas are shown in Figure 12 and Figure 

13, which visualizes the problem along the Salzach river and at severely degraded map sheets of the 

second study area. 
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Figure 12: Final LULC classification for the Salzburg area. The area consists of two map images (‘Salzburg-West’ and ‘Salzburg-
East’) that were processed and validated separately and then merged in GIS. The ‘Salzburg-East’ area was used for the training 
of the classification model, while the ‘Salzburg-West’ area was used in the development of the classification workflow and 
the final accuracy assessment. 

 

Figure 13: Final LULC classification for the second study area between Rauris and Taxenbach. The overall classification 
accuracy is considerably lower than for the Salzburg study area, due to significant decolourization and paper yellowing of 
the original map source. Although the accuracies are low, this map section presents the worst-case scenario for the 
classification model and most other regions will achieve considerably higher classification results.  
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5.3 LULC Classification Accuracy Assessment 
The perceived high overall accuracy of the LULC classification for the Salzburg area was supported by 

a statistical accuracy assessment. A 90.5% overall accuracy was achieved on the ‘Salzburg-West’ 

classification area with a Kappa index of 86% (see Table 6), based the total testing sample count of 526 

samples. 

Table 6: Confusion Matrix of the ‘Salzburg-West’ study area. 

 

While the overall classification accuracy was high, the accuracy per class varied considerably. Most 

notably ‘Water’ had a low accuracy, only reaching a producer’s accuracy of ~35%. Almost 60% of 

generated ‘Water’ samples had mistakenly been classified as ‘Other’, supporting the observation made 

earlier. 'RPath’ reached a producer’s accuracy of ~56%. The rest of the classes reached a producer’s 

accuracy between 86% for the class ‘Meadow’ and 100% for the classes ‘Garden’, ‘YUrban’, and ‘YPath’. 

100% accuracies were mainly achieved in classes with low sample counts. The class ‘Garden’ with 16 

samples, reached 100% producer’s accuracy. The largest land cover class ‘Agriculture’ with a total 

sample count of 268 reached a producer’s accuracy of 98%, while the second largest land cover class 

‘Meadow’ reached 86% producer’s accuracy. 

User’s accuracy also varied. The lowest user’s accuracy was achieved by the class ‘YPath’, which is only 

present in a small section of the map. Because the class has similar colour properties as the class 

‘Meadow’ it was often falsely classified as such, resulting in a user’s accuracy of only 10% and multiple 

false positives. Similarly, the class ‘Other’ only reached a user’s accuracy of 46%, often being 

misclassified as ‘Water’. The user’s accuracy of ‘RPath’ was also low with 50%, often being mistakenly 

classified as ‘Meadow’, ‘Agriculture’, or ‘RUrban’. The other classes reached significantly higher 

accuracies, with ‘Water’, ‘Meadow’, ‘Forest’, and ‘Agriculture’ each achieving more than 95% user’s 

accuracy. The class ‘Water’ is again notable, because even though its producer’s accuracy was low 

Class Name Water Meadow Forest Garden Agriculture Other RPath BPath YUrban RUrban YPath Total U_Accuracy Kappa

Water 10 0 0 0 0 0 0 0 0 0 0 10 1 0

Meadow 0 106 0 0 2 2 0 0 0 0 0 110 0,96363636 0

Forest 0 0 28 0 0 0 0 0 0 0 0 28 1 0

Garden 0 0 1 16 0 0 0 0 0 0 0 17 0,94117647 0

Agriculture 0 2 0 0 263 0 0 0 0 0 0 265 0,99245283 0

Other 19 1 0 0 1 19 0 1 0 0 0 41 0,46341463 0

RPath 0 3 0 0 1 0 5 0 0 1 0 10 0,5 0

BPath 0 2 0 0 1 0 0 12 0 0 0 15 0,8 0

YUrban 0 0 0 0 0 0 2 0 8 0 0 10 0,8 0

RUrban 0 0 0 0 0 0 2 0 0 8 0 10 0,8 0

YPath 0 9 0 0 0 0 0 0 0 0 1 10 0,1 0

Total 29 123 29 16 268 21 9 13 8 9 1 526 0 0

P_Accuracy 0,34482759 0,86178862 0,96551724 1 0,98134328 0,9047619 0,55555556 0,92307692 1 0,88888889 1 0 0,90494297 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0,8611595
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overall, all detected samples were correctly classified, leading to no false positives and a 100% user’s 

accuracy. 

Although the Salzburg study area showed a high overall accuracy in the LULC classification, the result 

could not be repeated in the second study area between Rauris and Taxenbach (see Table 7). With a 

total accuracy of only 31% and a Kappa index of 17%, no satisfactory result could be obtained. 

Table 7: Confusion Matrix of the study area between Rauris and Taxenbach. 

 

However, the confusion matrix reveals that classification inaccuracies are not distributed equally 

between all detected classes. As in the Salzburg area, the individual class accuracies varied, with 

producer’s accuracies ranging from ~21% to 100%. Low producer’s accuracies were obtained for the 

class ‘Meadow’ with ~21%, ‘BPath’ with 22%, and ‘YUrban’ where only 55% were classified correctly. 

‘RPath’ and ‘Forest’ achieved higher producer’s accuracies with 80% and 87% respectively. The 

remaining classes either achieved 0% or 100% accuracy, but with low or no sample counts in this 

region. 

User’s accuracy varied as well, with five classes reaching 0% accuracy, including ‘Water’, ‘Garden’, 

‘Agriculture’, ‘RUrban’, and ‘YPath’. 'RPath', 'BPath', and 'YUrban' achieved user accuracies ranging from 

20% to 50%. The highest user’s accuracy was obtained with the class ‘Meadow’ with 99%, indicating, 

that if the class was detected it was mostly classified correctly. The other frequently classified classes 

‘Forest’ and ‘Other’ reached user’s accuracies of 42% and 1.6%. The low user’s accuracy for the class 

‘Other’ indicates that the algorithm falsely classified many areas that were meadow as ‘Other’.  

  

Class Name Water Meadow Forest Garden Agriculture Other RPath BPath YUrban RUrban YPath Total U_Accuracy Kappa

Water 0 27 2 0 0 0 0 1 0 0 0 30 0 0

Meadow 0 85 0 1 0 0 0 0 0 0 0 86 0,98837209 0

Forest 6 96 73 0 0 0 0 2 0 0 0 177 0,41242938 0

Garden 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Agriculture 0 70 2 0 0 0 1 1 1 0 0 75 0 0

Other 9 107 2 1 0 2 0 2 2 0 1 126 0,01587302 0

RPath 1 5 0 0 0 0 4 0 0 0 0 10 0,4 0

BPath 0 7 0 0 0 0 0 2 1 0 0 10 0,2 0

YUrban 0 3 0 1 0 0 0 1 5 0 0 10 0,5 0

RUrban 2 3 5 0 0 0 0 0 0 0 0 10 0 0

YPath 0 9 0 1 0 0 0 0 0 0 0 10 0 0

Total 18 412 84 4 0 2 5 9 9 0 1 544 0 0

P_Accuracy 0 0,20631068 0,86904762 0 0 1 0,8 0,22222222 0,55555556 0 0 0 0,31433824 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0,17044693
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6 Discussion 
Although the overall accuracies for the LULC classification were high in the main study areas, 

significantly lower accuracies were obtained when the classification workflow was applied to the low 

quality map sections in the High Tauern region. The following chapter will interpret the visual and 

statistical results obtained and discuss strengths and limitations of the studies’ methodology.  

6.1 Map Symbol Recognition 
The findings outlined in 5.1 Map Symbol Recognition’, demonstrate the (theoretical) feasibility of 

utilising CNNs to detect and extract map symbols from the Franciscean Cadastre. While the overall 

accuracy was comparatively low due to the presence of several false positives, the CNN was able to 

differentiate the individual classes. Complex symbols, such as the letter ‘w’ representing meadows, 

were often successfully detected. Also, larger objects such as coniferous trees were often successfully 

identified, but a high number of false positives persisted which reduced the model’s overall validity.  

As the number of unique training samples for the training of the CNN model was low (see Table 1), the 

model’s learning capabilities were restricted. While data augmentation was able to increase the 

number of samples to a level where the model was able to identify many of the symbols, the 

recognition capabilities most likely remained insufficient for the detection of most complex symbols. 

Potential model improvements were also confined by the limited augmentation options available for 

map symbols. Mirroring and rotation of the samples was largely not an option because the orientation 

of map symbols is crucial for class differentiation. The only augmentation options left for the sample 

patch generation was restricted to slight rotations which was not sufficient. 

Future research should therefore start by increasing the number of unique training samples and a 

larger training area with more map sheets of the cadastre to capture a greater variety of symbols. 

Besides the use of a larger training dataset, increasing the neural networks depth and number of 

feature maps could also help to improve the overall accuracies. In addition to remodelling the CNN 

training process, alternative classification methods, such as template matching, could potentially yield 

better results with low sample counts. This option should be explored, before investing additional time 

into the training of a new CNN classification model. In the past, template matching algorithms and 

have been explored for the extraction of text and symbols from historic maps (Budig and van Dijk, 

2015, Xia et al., 2022) and implementations are available to eCognition (Trimble, 2024a). 

6.2 Map Segmentation 
Crucial prerequisite for successful OBIA, is the accurate segmentation of the image into meaningful 

image objects, that represent the features in the image. The segmentation results by the MRS did 

overall represent the class boundaries of most of the image objects found in the original map source. 
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Results were generally very precise in areas with large spectral contrast, but if the colour contrast was 

low, the multiresolution segmentation algorithm sometimes created segments that included different 

objects, such as trees symbols or lines, resulting in inaccurate classifications where objects extended 

into neighbouring classes. While these issues persist in the entire study area, they generally only 

influence small fragments of the map, and they largely did not impact overall the classification results.  

Minor segmentation issues were located the roads where parts of the roads were seemingly growing 

into the neighbouring fields, as well as some tree symbols near the roads, which were mistakenly 

included in some of the road segments (both visible in Figure 14). This created some imprecise borders 

for sections of the road network, which could theoretically be smoothened with additional 

morphology tools, but were kept in the final classification, as morphology tools will fluence other map 

areas as well.  

 

Figure 14: Comparison of classification results near Aiglhof, Salzburg. 

Low colour differences and subsequent segmentation errors were also identified between gardens, 

meadows, and brown paths, where the segmentation led to suboptimal boundary delineations. In 

Figure 14 some misclassifications can be found where the multiresolution segmentation algorithm 

created segments that do not represent actual map features. These errors were then transferred to 

the final classification result. In general, these issues are known issues of the MRS algorithm and have 

been described by Ma et al. (2017) before. 

Nevertheless, most classes were segmented correctly. Figure 15 shows a detailed section of the historic 

city centre of Salzburg, where letters overlap and obstruct building footprints. Even though the scene 

contains many complex boundaries, the final classification was able to eliminate most of the 

cartographic lines and letters, which indicates that the chosen segmentation level was sufficient to 
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segment most of the features. Finally, it must be noted, that while some minor segmentation errors 

persisted, the resolution of the classification result is in general fine enough that negative impacts of 

the segmentation on the final classification can at the most part be neglected.  

 

Figure 15: Comparison of the classification results near Staatsbrücke, Salzburg. 

6.3 LULC Classification Accuracy 
As outlined in section 4.2.3.4 LULC Accuracy Assessment’, the overall classification accuracy achieved 

for the main study area around Salzburg was high, but individual class accuracies varied greatly. The 

two main reasons for inaccuracies in the classification result are either spectrally similar classes, that 

were not correctly classified by the CNN and subsequent reclassifications, or too complex classes, that 

require specifically optimized classification models and additional object-based classification 

algorithms. Several reasons for spectral similarity between classes have been identified: 

One reason is, that the map source, like many historical maps, has varying grades of quality. Some map 

sheets are significantly degraded and contain regions with low colour differences. In these regions 

colours either faded or turned yellow or brownish due to the aging paper. This issue is transferred to 

the digital dataset in the map scanning and digitization process. The scanning can also worsen the 

problem and introduce additional artifacts, such as halos along edges, over sharpening and additional 

discolouration (see section 1.3 Current Challenges in (Semi-)Automatic Map Processing  
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1.3 Current Challenges in (Semi-)Automatic Map Processing’). All these errors and issues in map quality 

can influence the results of both the image segmentation as well as the image classification process. 

While the CNN can potentially learn some of these maps colour characteristics and reduce their impact 

on the classification, some errors will find their way into the final classification result. The following 

sections will discuss the LULC classification results, as well as the removal of cartographic symbols from 

the final result. 

6.3.1 Class Accuracy 
As described previously, the results of the LULC classification in the ‘Salzburg-West’ study area had for 

the most part in high accuracies. Even though the overall accuracy was high, significant differences 

between individual class accuracies could be observed.  

For the buildings classes, the segmentation and classification did provide good results, due to their 

high colour contrast compared to most other classes and the black outlines present in the original map 

source. After the reclassification phase, there were surprisingly no large issues in separating red lines 

from red buildings. Minor problems were identified when removing black lines and letters from the 

map, which did sometimes create uneven borders which slightly deviate from the original class 

borders. Utility buildings (coloured in yellow) were also classified well. 

Another challenge in map analysis process had been the detection of agriculture, which was important 

as this class covers large areas of the Salzburg study area. Most agricultural fields were classified well, 

but during the training and the creation of the probability heatmaps some minor issues had been 

observed, where areas neighbouring the class ‘Other’ had been incorrectly detected as such, probably 

due to their colour similarity. This issue in the classification model was largely solved during the 

reclassification phase, where agriculture was simply classified on a larger image object level. A similar 

classification issue was observed in areas next to meadows, especially when the thin meadow strips 

along the agricultural fields were not well coloured. No simple rule for reclassification was found, and 

some misclassifications remain. However, these only make up a small area of the study area. 

Meadows, like agricultural fields, were overall well classified. Minor problems were observed where 

meadows border gardens. While most areas were correctly identified as garden or meadow, minor 

misclassifications due to low colour differences were observed.  

Gardens were predominantly classified correctly. Small scale misclassifications were observed, when 

located next to meadows. As both classes have similar colours, an improved classification algorithm 

might provide better results. In addition, larger sample patches might help the CNN to gather more 

spatial context and thereby detect the pattern of gardens, improving the distinction between both 

classes. 
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Forests were classified very well as they are with their dark brown colour distinct from most other 

classes. Minor issues were found in small patches around the ‘Mirabellgarten’, where the small 

segment sizes in combination with the presence of several classes resulted in low probabilities and 

thereby low confidence classifications with higher error rates. 

The class ‘Other’ was mostly correctly classified, apart from the issues with the differentiation between 

the ‘Water’ and ‘Agriculture’ classes (see Figure 16). The biggest issue here, was to prevent the 

classification of areas which are clearly not water as ‘Water’. This was achieved, but with the 

consequence of a very low accuracy for the class ‘Water’. Water was mostly derived well in areas that 

were already by colour clearly marked as ‘Water’, such as small rivers, creeks, and most borders along 

larger bodies of water. Lower overall accuracies of this class were accepted if it resulted in fewer false 

positives and higher accuracies of other classes. The class ‘Water’ was thereby the only class, that 

requires further manual input after running the entire classification, which is indicated by the low final 

producer’s accuracy of only 35%.  

 

Figure 16: Probability heatmap of the class 'Other' compared to the original map source. In areas which border agriculture 
and along black lines, the classification model falsely identifies higher likelihoods of the class ‘Other’, which can influence the 
final classification. The heatmap also visualizes the model’s confusion between uncoloured bodies of water and ‘Other’.  

Besides buildings and vegetation, roads make up a considerable part of the overall surface area. The 

class ‘BPath’ represents simple paths and was mostly well detected and classified. Some issues did 

persist and could not be completely solved, such as small issues with the correct segmentation from 

black symbols and lines. 'RPath' was also mostly correctly classified, but like other road classes, its 

accuracy was affected by incorrect segmentations. Its spectral similarity to red lines and red buildings 

sometimes led to an incorrect classification and it is important to note that not all issues were able to 

be solved by additional conditions during the reclassification phase. 
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In difference to the other two road classes, 'YPath' was only found in one small area in the ‘Salzburg-

West’ study area. Although the class was correctly detected and classified, false positives were more 

common due to its spectral similarity to meadows in other areas. Additional expert-based rules were 

unable to completely solve the issue and might require adjustments to the classification model. 

Besides the colour similarities between several classes, the image interpretation was also a source of 

error. The Franciscean Cadastre includes several LULC classes that are not solely characterized by one 

colour or shape, but instead are indicated by multiple colours, textures, and complex shapes. For 

example, quarries are classified by a blueish-grey stone texture, clay pits are represented by oval 

brown-black clay textures, and peat cuttings are symbolized by rectangular brown bricks. This is 

challenging to model, as it traditionally requires high-level reasoning. Due to time constraints, this 

study did not aim to classify all complex classes of the Franciscean Cadastre, which may be a task for 

future studies.  

However, significant problems were encountered when classifying and separating the class 'Water' 

from 'Other'. While water is generally coloured blue, larger areas are like the class 'Other' uncoloured. 

For larger bodies of water, boundaries are only implied by a thin blue colour strip at selected sections 

of the class border. This creates issues with the correct training and recognition capabilities of the 

classification model. In this study therefore, training samples were only taken in areas with visible blue 

colouring, to avoid issues with separating both classes. The final classification was intended to be 

conducted using either thresholds and additional geographical conditions in the object-based 

reclassification phase or a type of growing algorithm, both of which weren’t successful because of 

several reasons. The reclassification approaches were unsuccessful due to several reasons. Both 

classes border each other at the city centre of Salzburg, where fortifications classified as ‘Other’ 

directly border the Salzach river. The classes are separated by a thin black line, which cannot be 

continuously delineated by current classification methods. Region-growing algorithms which aim at 

extending the ‘Water’ class into neighbouring classes, however, were growing into the fortification 

area, which made accurate classifications impossible. Further attempts did not yield good results, 

resulting in the current low producer's accuracy for the 'Water' class and the necessity of manual 

reclassifications. 

6.3.2 Removal of Letters and Lines 
The removal of all boundaries and text overlays from the classification result is a crucial step in the 

digitization and vectorization of LULC information from historic maps. Within the map processing 

workflow, the removal was part of the reclassification phase after the map had been segmented and 

classified. A pixel-based object resizing algorithm was used to remove letters, lines, map symbols, and 

other non-land-cover areas from the final classification. The algorithm successfully removed the black 
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outlines around buildings and parcels while retaining the overall shape of the building footprints and 

other smaller objects. Larger objects, such as place and town names, and no data regions, including 

small gaps between the old map sheets, were also removed. The cleanup of letters and lines was done 

in both urban and rural areas. 

 

Figure 17: Misclassifications at the Salzach river. Some outlines around letters remain, as they were falsely classified as water 
and subsequently missed in the reclassification phase, which aimed at removing letters, lines, and no data areas from the 
classification. A horizontal line is also visible, which was likely caused by the mosaicking of the map sheets after the scanning 
of the original map source. 

Smaller objects, including various map symbols coloured in black and parcels numbers coloured in red, 

were successfully removed as well. The parcel numbers were initially a topic of concern, as they had a 

similar colour as red buildings but as they were mostly correctly detected and classified by the CNN it 

no longer proved to be a problem during the removal. Although most of the objects were successfully 

removed, some letters and lines that were previously misclassified remained. This issue was observed 

in some letters in the Salzach river (see Figure 17) that had been misclassified as water. However, since 

they were exceptions and further improvements were difficult and time-consuming, no further 

corrections were made.   
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6.4 Strengths and Weaknesses of the Classification Approach 
Historic maps present several unique challenges to classification algorithms. The decision to use OBIA 

combined with CNN classification to extract geographic information from the digitized Franciscean 

Cadastre had several advantages and disadvantages compared to alternative approaches, which will 

be explained below.  

The evaluation of the classification approach must be carried out in a slightly different way compared 

to remote sensing image analysis, as there are several fundamental differences. Firstly, when analysing 

historical maps, there is usually no other data to support the classification. When analysing remotely 

sensed imagery, there is often supplementary raster or vector data available that can be used to 

improve the classification results. In the analysis of historic maps, the original data source is generally 

the only source available. The general condition of the physical map and the digitization and 

preprocessing process therefore have much influence on the final classification result. If the quality of 

the input image is poor, then even the sophisticated classification algorithms will not be able prevent 

false classifications. The second difference to remote sensing image analysis is located in the 

heterogeneity of the different historic map products. Different colourizations, map symbols, hand-

written text, and the general image complexity create challenges to any current classification 

approach. While there are several efforts to develop fully automatic map processing, most current 

approaches are semi-automatic and map-specific, including the approach taken in this study. 

The object-based analysis had several advantages, compared to traditional pixel-based approaches as 

outlined in chapter 2 Theoretical Principles of Map Processing’. The integration of expert-based rules 

into the classification process made it possible to define additional conditions for the classification of 

selected LULC types, such as the geometric shape of classes or neighbourhood relationships. By using 

the MRS algorithm for the segmentation of the image, small and large map features could be classified 

at the different scales and thereby ensure that both small map symbols and large fields could be 

correctly classified. In combination this allowed for high classification accuracies.  

The use of a CNN model for the classification, instead of more traditional machine-learning classifiers, 

had several advantages. As historic map processing is highly dependent on the quality of a single data 

source, the digitized map, it can only use limited map characteristics in the classification. But the most 

common property, colour, is often unusable due to various factors such as paper aging or stains, which 

will mislead classifiers that only look at colour. CNNs have the advantage of being able to recognize 

complex patterns and based on colour and shape properties, which makes them favourable for historic 

map processing. Downsides of a CNN based classification approach are, time consuming creation of 

training samples, the parametrization, and the extended knowledge necessary (Gu et al., 2018).  
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In retrospect, many of the map processing specific issues listed in section 1.3 Current Challenges in 

(Semi-)Automatic Map Processing’ were also experienced during this study. Especially, the low map 

quality did pose a challenge in the classification of map features. The preprocessing necessary for the 

training of the CNN was also considerable, with much time spent on the improvement of the model’s 

architecture and parameters.  

6.5 Transferability  
The transferability of the workflow is one of the most important criteria for (semi-)automated image 

processing approaches. Transferability ensures the automation of tasks on other areas outside the 

training region. It therefore allows for scaling and increased efficiency, which are both primary 

objectives in the development of automated rulesets.  

To test the transferability of the approach to other (degraded) map sections of the Franciscean 

Cadastre and assess the robustness of the image analysis approach, the workflow was applied to the 

second study area in the High Tauern between Rauris and Taxenbach. The Results, as expected, were 

less accurate, especially in heavily degraded and discoloured areas. As outlined in section 5.3 LULC 

Classification Accuracy Assessment’, the overall accuracy per class varied. While forests were mostly 

classified correctly, accuracies for other classes fell significantly. Especially, grassland which makes up 

a huge part of the study area, was often mistakenly classified as ‘Other’ or ‘Agriculture’ in areas where 

the green colour had faded or yellowing of the paper had occurred.  

Another potential source of error in regions with very different colour properties might be caused by 

the hard thresholds introduced in the reclassification section. While the thresholds did help in the 

‘Salzburg-West’ study area to improve class accuracy, they might reduce the accuracy in other regions. 

The introduction of fixed thresholds should therefore be carefully implemented and potentially revised 

in follow-up studies.   

Finally, the results in both study areas show that the current classification model and workflow are not 

yet good enough to overcome all challenges present in the Franciscean Cadastre. Although these 

results are unfortunate, it is important to note that some of the heavily degraded map sections are 

difficult to classify even with human interpretation. And while the transferability to heavily degraded 

map sections is limited; the image analysis workflow was robust enough to achieve high accuracies 

around Salzburg.   
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7 Conclusion & Outlook 
Much research has been conducted in recent years to automate the information extraction process 

from historic map sources, driven by advances in image analysis and the continuing demand for historic 

geodata. In recent years, breakthroughs in deep learning techniques have demonstrated their 

potential for object detection and image classification tasks. While some studies already explored the 

potential of CNN classifiers for the classification of historic maps, their application to scanned maps 

has so far been limited. 

This study aimed at developing a workflow for the semiautomatic extraction of geographic information 

from the Franciscean Cadastre using OBIA and CNNs to classify and vectorize historic maps. Research 

goals were twofold. The study should assess the capabilities of a combined OBIA and CNN classification 

approach to extract the most important features of the cadastre, especially in areas with bad image 

quality. In addition, the workflow was tested on a different map section to assess its transferability. 

The study results should provide the foundation for future extended vectorization works that would 

enable the quantitative analysis of the historic landscape of Salzburg and its transformation over past 

200 years.  

The image analysis was divided into two parts: the detection and recognition of selected map symbols 

which aimed to extract point data, and the segmentation and classification of important surface 

information. Symbol extraction results were mixed, with many types identified correctly, but the 

classification model was unable to achieve sufficient accuracy to use the results in the subsequent 

LULC classification. The LULC classification workflow was able to correctly segment and classify the 

most important LULC types in the ‘Salzburg-West’ study area.  

The three-level multiresolution segmentation approach used for the LULC classification was successful 

in delineating smaller features, such as letters and lines, as well as larger objects, including agricultural 

fields and bodies of water. The ESP2 tool that was used to identify best-fitting scale parameters reduced 

the overall time necessary for image segmentation. While the segmentation was overwhelmingly 

successful, some minor issues with the region-based segmentation technique persisted, such as lower 

accuracy in low contrast regions and the unintended merging of very fine features with neighbouring 

classes that had similar colour properties.   

Some issues with the LULC classification accuracy were observed in areas that had not been colourized 

properly in the original map source. These issues persisted and could not be solved entirely neither by 

the CNN classifier nor by the expert-based classification. When applied to the study area in the High 

Tauern, the LULC classification accuracy per class dropped substantially, which indicates general 

overfitting of the classification model and limits the transferability of the model to less degraded map 
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sheets. To counter issues of the supervised classification model and increase the accuracy of some 

LULC classes, expert-based rules were introduced. They were able to correctly remove most letters, 

lines, and text from the final classification result and were also able to remove some minor 

misclassifications. On the downside they limited the transferability of the approach as they introduced 

hard thresholds into the classification. Despite the named shortcomings, the OBIA approach proved to 

be valuable as it provided a flexible framework for the refinement of the initial classification results 

after the CNN training had been finished.  

The CNN model was able to detect the most important LULC classes confirming the capabilities of CNN 

classifiers for the analysis of historic maps. It should be noted that both the LULC classification model 

and the map symbol detection model would likely benefit from a larger training dataset. Enriching 

both training datasets with more samples and adding further data augmentation methods would likely 

further enhance the accuracy of the models and increase its generalization capabilites in other 

cadastral regions. This underscores the importance of an expansive and diverse training set for 

comprehensive model performance.  

The study’s results suggest that despite recent advancements in image analysis, the digitization of 

historic maps remains a challenge, especially when original map sheets are of poor quality. Some 

degree of human intervention in the classification process is still necessary and cannot be entirely 

avoided, requiring further research into automated image processing. Future research on historic map 

analysis should therefore focus on two objectives: Firstly, increasing the number and variety of training 

samples by expanding the total size of the training areas. This will likely improve overall classification 

results and and increase model robustness in poor map conditions. Secondlys the overall accuracies 

of the classification results around Salzburg were already suitable for quanitative research, provided 

some manual adjustments are made to the classification of water bodies, classification work should 

also be upscaled to cover larger areas of the cadastre. By building upon the groundwork laid by this 

study, a large-scale approach can be undertaken to further vectorize the Franciscean Cadastre and to 

make important historic geographic information available for GIS analysis. 
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Appendix 
 

Part I: Classification result of the main study area around Salzburg. 

Part II: Classification result of the High Tauern study area. 






